Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3
Cho hàm số f (x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn [ f ' ( x ) ] 2 + f ( x ) f '' ( x ) ≥ 1 , ∀ x ∈ [ 0 ; 1 ] và f 2 ( 0 ) + f ( 0 ) . f ' ( 0 ) = 3 2 . Giá trị nhỏ nhất của tích phân ∫ 0 1 f 2 ( x ) d x bằng
A. 5 2
B. 1 2
C. 11 6
D. 7 2
Cho hàm số y=f(x) nhận giá trị không âm và liên tục trên đoạn [0;1]. Đặt g ( x ) = 1 + 2 ∫ 0 x f ( t ) d t . Biết g ( x ) ≥ [ f ( x ) ] 3 với mọi x ∈ [ 0 ; 1 ] . Tích phân ∫ 0 1 [ g ( x ) ] 2 3 d x có giá trị lớn nhất bằng
A. 5 3
B. 4.
C. 4 3
D. 5.
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1], f(x) và f' (x) đều nhận giá trị dương trên đoạn [0;1] và thỏa mãn f(0)=2, ∫ 0 1 f ' ( x ) . [ f ( x ) ] 2 + 1 ] dx = 2 ∫ 0 1 f ' ( x ) . f ( x ) dx . Tính ∫ 0 1 [ f ( x ) ] 3 dx ?
A. 15/4.
B. 15/2.
C. 17/2.
D. 19/2.
Cho hàm số f (x) có đạo hàm cấp hai liên tục trên đoạn [0;1] thoả mãn f ' ( x ) 2 + f x f ' ' x ≥ 1 ∀ m ∈ 0 ; 1 và f 2 0 + f 0 . f ' 0 = 3 2 Giá trị nhỏ nhất của tích phân ∫ 0 1 f 2 x d x bằng
A. 5 2
B. 1 2
C. 11 6
D. 7 2
Cho hàm số f (x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;2] thoả mãn f(0)=3,f(2)=12 và ∫ 0 2 ( f ' ( x ) ) 2 f ( x ) d x = 6 . Tính f(1).
A. 27 4
B. 25 4
C. 9 2
D. 15 4
Cho hàm số y = f(x) liên tục, không âm trên R thỏa mãn f x . f ' x = 2 x f x 2 + 1 và f(0) = 0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f x trên đoạn [1;3] lần lượt là
A. M = 20, m = 2
B. M = 4 11 , m = 3
C. M = 20 , m = 2
D. M = 3 11 , m = 3
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số f ( x ) = a x 4 + b x 2 + c có m i n ( - ∞ ; 0 ) f ( x ) = f ( - 1 ) . Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [ 1 2 ;2] bằng
A. c + 8a
B. c - 7 16 a
C. c + 9 16 a
D. c - a