Cho hàm số y=f(x) xác định và liên tục trên đoạn [-1;3] có đồ thị như hình vẽ sau.
Có bao nhiêu giá trị của m để giá trị lớn nhất của hàm số y = |f(x)+m| trên đoạn [-1;3] bằng 2018?
A. 2.
B. 4.
C. 6
D. 0
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Cho hàm số y = f(x) liên tục trên đoạn [-1;3] và có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [-1;3]. Giá trị của M + m là:
A. -5
B. 2
C. -6
D. -2
Cho hàm số y = f ( x ) = x - m 2 x + 4 với m là số thực. Tìm giá trị lớn nhất của m để hàm số f(x) có giá trị nhỏ nhất trên [0;1] bằng -1
A. m = 2
B. m = 0
C. m 6
D. m = 3
Cho hàm số f(x)= | 3 x 4 - 4 x 3 - 12 x 2 + m | . Gọi M là giá trị lớn nhất của hàm số trên đoạn [-1;3]. Giá trị nhỏ nhất của M bằng
A. 59 2
B. 5 2
C. 16
B. 57 2
Cho hàm số y = f (x) liên tục trên đoạn [-1;3] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-1;3] . Giá trị của M - m bằng
A. 0
B. 1
C. 4
D. 5
Cho hàm số y=f(x) liên tục trên đoạn [-1;3] và có đồ thị như hình bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-1;3]. Giá trị của M − m bằng
A. 4
B.1
C. 0
D. 5
Cho hàm số y=f(x) liên tục, không âm trên R thỏa mãn f ( x ) . f ' ( x ) = 2 x f ( x ) 2 + 1 và f(0)=0. Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y=f(x) trên đoạn [1;3] lần lượt là:
A. M=20;m=2
B. M = 4 11 ; m = 3
C. M = 20 ; m = 2
D. M = 3 11 ; m = 3
Hàm số y=f(x) liên tục và có bảng biến thiên trong đoạn [-1;3] cho trong hình bên. Gọi M là giá trị lớn nhất của hàm số y=f(x) trên đoạn [-1;3]. Tìm mệnh đề đúng?
A. M=f(-1).
B. M=f(3).
C. M=f(2).
D. M=f(0).