Đáp án A.
Ta có f x ≤ 1 ⇔ 5 x . 8 2 x 3 ≤ 1 ⇔ log 2 5 x . 8 2 x 3 ≤ 0 ⇔ x log 2 5 + 2 x 3 log 2 8 ≤ 0 ⇔ x log 2 5 + 6 x 3 ≤ 0 .
Hoặc log 5 5 x . 8 2 x 3 ≤ 0 ⇔ x + log 5 8 2 x 3 ≤ 0 ⇔ x + 6 x 3 log 5 2 ≤ 0 .
Đáp án A.
Ta có f x ≤ 1 ⇔ 5 x . 8 2 x 3 ≤ 1 ⇔ log 2 5 x . 8 2 x 3 ≤ 0 ⇔ x log 2 5 + 2 x 3 log 2 8 ≤ 0 ⇔ x log 2 5 + 6 x 3 ≤ 0 .
Hoặc log 5 5 x . 8 2 x 3 ≤ 0 ⇔ x + log 5 8 2 x 3 ≤ 0 ⇔ x + 6 x 3 log 5 2 ≤ 0 .
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f'(x), biết f(3)+f(20=f(0)+f(1) và các khẳng định sau:
1) Hàm số y=f(x) có 2 điểm cực trị
2) Hàm số y=f(x) đồng biến trên khoảng - ∞ ; 0
3) M a x 0 ; 3 f x = f 3
4) M a x ℝ f x = f 2
5) M a x - ∞ ; 2 f x = f 0 .
Số khẳng định đúng là

A. 2
B. 3
C. 4
D. 5
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị của hàm số f ' ( x ) , biết f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) và các khẳng định sau:
Hàm số y = f(x) có 2 điểm cực trị.
Hàm số y = f(x) đồng biến trên khoảng ( - ∞ ; 0 ) .
Max [ 0 ; 3 ] f ( x ) = f ( 3 ) .
Min ℝ f ( x ) = f ( 2 ) .
Max [ - ∞ ; 2 ] f ( x ) = f ( 0 ) .
Số khẳng định đúng là
A. 2.
B. 3.
C. 4.
C. 4.
Cho hàm số f ( x ) = 1 3 + 2 x + 1 3 + 2 - x . Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
1 ) f ' ( x ) # 0 , ∀ x ∈ R
2 ) f ( 1 ) + f ( 2 ) + . . . + f ( 2017 ) = 2017
3 ) f ( x 2 ) = 1 3 + 4 x + 1 3 + 4 - x
A. 0
B. 3
C. 2
D. 1
Cho hàm số f(x) có đạo hàmf'(x) xác định và liên tục trên đoạn [0;6]. Đồ thị hàm số y=f'(x) như hình vẽ bên. Biết f(0)=f(3)=f(6)=-1,f(1)=f(5)=1. Số điểm cực trị của hàm số y = [ f ( x ) ] 2 trên đoạn [0;6] là

A. 5.
B. 7.
C. 9.
D. 8.
Cho hàm số f(x) có đạo hàm không âm trên [0;1] thỏa mãn ( [ f ( x ) ] 2 [ f ' ( x ) ] 2 ) e 2 x = 1 + [ f ( x ) ] 2 và f(x)> 0 với ∀x∈[0;1], biết f(0)=1. hãy chọn khẳng định đúng trong các khẳng định sau
A. 5 2 <f(1)< 3
B. 3<f(1)< 7 2
C. 2<f(1)< 5 2
D. 3 2 <f(1)< 2
Cho hàm số f(x) có đạo hàm trên ℝ và f '(x) > 0, ∀ x ∈ ℝ . Biết f(1)=2. Hỏi khẳng định nào sau đây có thể xảy ra?
A. f(2) + f(3) = 4
B. f(-1) = 2
C. f(2) = 1
D. f(2018) > f(2019)
Cho hàm số y=f(x) có đạo hàm trên R và f ' ( x ) > 0 ∀ x ∈ ( 0 ; + ∞ ) . Biết f(1)=2.
Khẳng định nào dưới đây có thể xảy ra ?
A. f (2017) > f (2018)
B. f (-1) = 2
C. f (2) = 1
D. f (2) + f (3) = 4
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)

Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho bài toán: “Tìm Giá trị lớn nhất, giá tri nhỏ nhất của hàm số y = f ( x ) = x + 1 x - 1 trên - 2 ; 3 2 ?”. Một học sinh giải như sau:
Bước 1: y ' = 1 - 1 ( x - 1 ) 2 ∀ x ≢ 1
Bước 2: y ' = 0 ⇔ x = 2 ( L ) x = 0
Bước 3: f ( - 2 ) = - 7 3 ; f ( 0 ) = - 1 ; f 3 2 = 7 2 Vậy m a x [ - 2 ; 3 2 ] f ( x ) = 7 3 ; m i n [ - 2 ; 3 2 ] = - 7 3
Lời giải trên đúng hay sai ? Nêu sai thì sai lừ bưóc nào ?
A. Lời giải trên hoàn toàn đúng
B. Lời giải trên sai từ bước 1
C. Lời giải trên sai từ bước 2
D. Lời giải trên sai từ bước 3
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0; 1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6