Chọn B.
D = [-2; 2]
F(x) không xác định tại x = 3
; f(-2) = 0. Vậy hàm số liên tục tại x = -2
Vậy không tồn tại giới hạn của hàm số khi x → 2.
Chọn B.
D = [-2; 2]
F(x) không xác định tại x = 3
; f(-2) = 0. Vậy hàm số liên tục tại x = -2
Vậy không tồn tại giới hạn của hàm số khi x → 2.
Cho hàm số f ( x ) có đạo hàm f ' ( x ) = ( x + 1 ) 4 ( x - 2 ) 5 ( x + 3 ) 3 . Số điểm cực trị của hàm số f ( x ) là:
A. 5
B. 3
C. 1
D. 2
Cho hàm số f ( x ) có đạo hàm f ' ( x ) = ( x + 1 ) 4 ( x - 2 ) 5 ( x + 3 ) 3 . Số điểm cực trị của hàm số f ( x ) là:
A. 5
B. 3
C. 1
D. 2
1. đạo hàm của hàm số f(x) = 2x - 5 tại \(x_0=4\)
2. đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
3. đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
1) cho hàm số \(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}x^2+8x-1\) có đạo hàm là f'(x). Tập hợp những giá trị của x để f'(x) = 0
2) cho hàm số \(f\left(x\right)=\dfrac{3-3x+x^2}{x-1}\) giải bất phương trình f'(x) = 0
Cho hàm số f ( x ) = x 2 - 4 Chọn câu đúng trong các câu sau: Cho hàm sô f(x) = căn bậc hai x^2 - 4
(I) f(x) liên tục tại x = 2.
(II) f(x) gián đoạn tại x = 2
(III) f(x) liên tục trên đoạn [-2; 2].
A. Chỉ (I) và (III).
B. Chỉ (I).
C. Chỉ (II).
D. Chỉ (II) và (III).
1) đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
2) đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
1) đạo hàm của hàm số \(\dfrac{2x^2+1}{x^2}\) là
2) cho hàm số \(f\left(x\right)=\sqrt{-5x^2+14x-9}\) tập hợp các giá trị của x để f'(x) = 0 là
Cho hàm số f ( x ) = x 2 - 5 k h i x ≥ 3 ( 1 ) x 2 - 5 x + 2 k h i x < 3 ( 2 )
Trong biểu thức (2) ở trên, cần thay số 5 bằng số nào để hàm số f(x) có giới hạn khi x → 3?
A. 19.
B. 1.
C. -1.
D. Không có số nào thỏa mãn.
Cho hàm số y = f ( x ) = ( x - 1 ) 2 . Biểu thức nào sau đây chỉ vi phân của hàm số f(x) ?
A. dy = 2(x-1)dx
B. d y = 2 ( x - 1 ) 2 d x
C. dy = 2(x-1)
D. dy = (x-1)dx