Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hàm số f ( x ) = 2 x 3 - 3 x 2 + m . Có bao nhiêu số nguyên m để m i n - 1 ; 3 f ( x ) ≤ 3 .

A. 4

B. 8

C. 31

D. 39

Cao Minh Tâm
28 tháng 4 2017 lúc 10:58

Xét u = 2 x 3 - 3 x 2 + m

có  u ' = 6 x 2 - 6 x ; u ' = 0 ⇔ x = 0 ; x = 1 .

Do đó

Nếu  m - 5 ≥ 0

⇒ m i n - 1 ; 3 f ( x ) = m - 5 ≤ 3 ⇔ m ≤ 8 ⇒ m ∈ 5 , 6 , 7 , 8 .

Nếu  m + 27 ≤ 0

⇒ m i n - 1 ; 3 f ( x ) = - m + 27 ≤ 3 ↔ m ≥ - 30 ⇒ m ∈ - 30 ; - 29 ; - 28 ; - 27 .

Vậy m ∈ - 30 , . . . , 8  có tất cả 39 số nguyên thỏa mãn.

Chọn đáp án D.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết