Cho hàm số g ( x ) = ∫ x x 2 d t ln t với x>1. Tìm tập giá trị T của hàm số
Cho hàm số y=f(x) có đạo hàm f'(x) = ( x 2 - 1 ) ( x - 2 ) . Gọi S là tập tất cả các giá trị nguyên của tham số m để hàm số f ( x 2 + m ) có 5 điểm cực trị. Số phần tử của tập S là.
A. 4
B. 1
C. 3
D. 2
Cho hàm số f ( x ) có đạo hàm f ' ( x ) = ( x 2 - 9 ) ( x 2 - 3 x ) 2 , ∀ x ∈ ℝ . Gọi T là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng
Cho F(x) là một nguyên hàm của hàm số f(x) = |1+x| - |1-x| trên tập R và thỏa mãn F(1) = 3 Tính tổng T = F(0) + F(2) + F(-3)
A. 8.
B. 12.
C. 18.
D. 10.
Gọi F(x) là một nguyên hàm của hàm số f(x)= 5 x thỏa mãn f(0)= 1 ln 5 . Tính giá trị biểu thức T=F(0)+F(1)+F(2)+...+F(2017)
Xét hàm số f ( t ) = 9 t 9 t + m 2 với là m tham số thực. Gọi S là tập hợp tất cả các giá trị của m sao cho f(x) + f(y) =1 với mọi số thực x, y thỏa mãn e x + y ≤ e ( x + y ) . Tìm số phần tử của S.
A. 0
B. 1
C. Vô số
D. 2
Gọi F(x) là một nguyên hàm của hàm số f ( x ) = 2 x thỏa mãn F ( 0 ) = 1 ln 2 . Tính giá trị biểu thức T = F ( 0 ) + F ( 1 ) + . . . + F ( 2017 )
Cho hàm số y = f ( x ) = log 0 , 5 x - 1 + m 2 + m (m là tham số). Biết rằng có hai giá trị m 1 ; m 2 để gía trị nhỏ nhất của hàm số y = f(x) trên đoạn 33 32 ; 1025 1024 bằng 13. Tính T = ( m 1 2 - m 1 ) m 2 2 - m 2
A. T = 9
B. T = 36
C. T = 4
D. T = 64
Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x). Đồ thị hàm số y = f'(x) được cho bởi hình bên dưới. Biết rằng f(0) + f(1) - 2f(2) = f(4). - f(3). Giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [0;4] là
A. f(1)
B. f(0)
C. f(2)
D. f(4)