Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hàm số f(x) có đạo hàm không âm trên [0;1] thỏa mãn [ f ( x ) ] 4 . [ f ' ( x ) ] 2 ( x 2 + 1 ) = 1 + f 3 ( x ) và f(x)>0 biết f(0) = 2 Hãy chọn khẳng định đúng trong các khẳng định sau:
Cho hàm số f(x) liên tục trên ℝ và f(x) ≠ 0 với mọi x ∈ ℝ . f ' ( x ) = ( 2 x + 1 ) f 2 ( x ) và f(1)=-0,5. Biết rằng tổng f(1)+f(2)+f(3)+...+f(2017)= a b với a b tối giản.
Mệnh đề nào dưới đây đúng?
Cho hàm số f(x) có đạo hàm trên ℝ và f''(x) > 0, ∀ x ∈ ℝ . Biết f(1) = 2. Hỏi khẳng định nào sau đây có thể xảy ra?
A. f(2) + f(3) = 4
B. f(-1)= 2
C. f(2) = 1
D. f(2018) > f(2019)
Cho hàm số f(x) xác định trên R\{1} thỏa mãn f ' ( x ) = 1 x - 1 , f ( 0 ) = 2017 ; f ( 2 ) = 2018 . Tính S = f(3)-f(-1)
A. S = 1
B. S = ln2
C. S = ln4035
D. S = 4
Cho hàm số f(x) xác định trên ℝ \ - 2 ; 1 thỏa mãn f ' ( x ) = 1 x 2 + x - 2 ; f ( 0 ) = 1 3 và f(3)-f(-3) = 0 Tính giá trị của biểu thức T = f(-4)+f(-1)-f(4)
Cho hàm số f ( x ) = 1 3 + 2 x + 1 3 + 2 - x . Trong các khẳng định sau có bao nhiêu khẳng định sai?
A. 1
B. 2
C. 3
D. 4
Xét các khẳng định sau:
(1) Nếu hàm số y=f(x) xác định trên R thỏa mãn f(-1).f(0)<0 thì đồ thị của hàm số y=f(x) và trục hoành có ít nhất 1 điểm chung.
(2) Nếu hàm số y=f(x) xác định trên R thỏa mãn f(-1).f(0)<0 và f(0).f(1)<0 thì đồ thị của hàm số y=f(x) và trục hoành có ít nhất 2 điểm chung.
Phát biểu nào sau đây đúng?
A. Khẳng định đúng và khẳng định sai.
B. Khẳng định sai và khẳng định đúng.
C. Khẳng định sai và khẳng định sai.
D. Khẳng định đúng và khẳng định đúng.
Cho hàm số f(x) xác định trên ℝ \ 1 2 thỏa mãn f ' ( x ) = 2 2 x - 1 ; f ( 0 ) v à f ( 1 ) = 2 Giá trị của biểu thức f ( - 1 ) + f ( 3 ) bằng:
A. 4+ln15
B. 2+ln15
C. 3+ln15
D. ln15
Cho hàm số y=f(x) liên tục trên đoạn [-1;3], có bảng biến thiên như hình bên. Khẳng định nào sau đây là sai?
|
-1 0 2 3 |
||
|
+ 0 - || + |
||
|
5 2 1 -2 |
A. Hàm số đã cho không có cực tiểu.
B. Hàm số đã cho có cực đại.
C. Hàm số đã cho đồng biến trên khoảng (2;3).
D. Hàm số đã cho nghịch biến trên khoảng (0;1).