Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)
Cho hàm số f(x) liên tục trên R, f x ≠ 0 với mọi x và thỏa mãn f 1 = − 1 2 , f ' x = 2 x + 1 f 2 x . Biết f 1 + f 2 + ... + f 2019 = a b − 1 v ớ i a ∈ ℤ , b ∈ ℕ , a ; b = 1 . Khẳng định nào sau đây là sai?
A. a − b = 2019
B. ab > 2019
C. 2 a + b = 2022
D. b ≤ 2020
Cho đồ thị y=f’(x) trên [m;n] (như hình vẽ). Biết f(a)> f(c)>0; f(d)<f(b)<0 và
m
a
x
f
(
x
)
[
m
;
n
]
=
f
(
n
)
;
m
i
n
f
(
x
)
[
m
;
n
]
=
f
(
m
)
Số điểm cực trị của hàm số
y
=
f
(
x
)
trên [m;n] là
A. 6
B. 8
C. 9
D. 10
Cho hàm số y = f(x) thỏa mãn f'(x) = ( x + 1 ) e x và ∫ f ( x ) d x = ( a x + b ) e x + c , với a, b, c là các hằng số. Khi đó
A. a + b = 0
B. a + b = 3
C. a + b = 2
D. a + b = 1
Cho hàm số y=f(x) thỏa mãn f ' ( x ) = ( x + 1 ) e x và ∫ f ( x ) d x = ( a x + b ) e x + c với a, b, c là các hằng số. Khi đó:
A. a + b = 0
B. a + b = 3
C. a + b = 2
D. a + b = 1
Cho hàm số f(x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) thỏa mãn f ' ( x ) = 1 x 2 + x , f ( 1 ) = ln 1 2 . Cho ∫ 1 2 ( x 2 + 1 ) 2 f ( x ) d x =a ln3+b ln2+c, với a,b,c là các số hữu tỷ. Giá trị biểu thức a+b+c bằng
A. 27 20
B. 23 20
C. - 27 20
D. - 23 20
Biết luôn có hai số a và b để F x = a x + b x + 4 4 a - b ≠ 0 là nguyên hàm của hàm số f(x) thỏa mãn 2 f 2 x = F x - 1 . f ' x . Khẳng định nào sau đây đúng và đầy đủ nhất?
A. a = 1,b = 4
B. a = 1,b = -1
C. a = 1 , b ∈ ℝ \ 4
D. a ∈ ℝ , b ∈ ℝ
Cho hàm số f(x) liên tục trên R và f(x) ≠ 0 với mọi x ∈ R . f '(x) = (2x+1)f2(x) và f(1) = –0,5. Biết rằng tổng f(1) + f(2) + f(3) + ... + f(2017) = a b ; (a ∈ Z, b ∈ N) với a b tối giản. Mệnh đề nào dưới đây đúng?
A. a ∈ - 2017 ; 2017
B. b - a = 4035
C. a + b = - 1
D. a b < - 1
Cho hàm số f(x) có f ( 1 ) = 1, f ( m + n ) = f ( m ) + f ( n ) + m n , ∀ m , n ∈ ℕ * . Giá trị của biểu thức T = log f ( 96 ) − f ( 69 ) − 241 2 là
A.4
B.3
C.6
D.9