Cho hai tam giác vuông ABC và ABD có đỉnh góc vuông C và D năm trên cùng một nửa mặt phẳng bờ AB. Gọi p là giao điểm của các cạnh AC và BD. Đường thông qua P vuông góc với AB tại L
CMR. AB^2=AC.AP+BP.BD
(VẼ CẢ HÌNH)
Cho tam giác vuông ADC và tam giác vuông ABD có đỉnh góc vuông C và D nằm trên cùng 1 nửa mặt phẳng bờ AB. Gọi P là giao điểm của AC và BD. Qua P kẻ PI vuông góc với AB. Chứng minh :
a> AB.BI = BP.BD.
b> AB.AI = AC.AD.
c> AC.AD + BD.PD = AB^2
Cho tam giác vuông ADC và tam giác vuông ABD có đỉnh góc vuông C và D nằm trên cùng 1 nửa mặt phẳng bờ AB. Gọi P là giao điểm của AC và BD. Qua P kẻ PI vuông góc với AB. Chứng minh :
a> AB.BI = BP.BD.
b> AB.AI = AC.AD.
c> AC.AD + BD.PD = AB\(^{^2}\)
Trên cùng nửa mặt phẳng bờ là đường thẳng chứa đoạn AB, vẽ 2 tia Ax và By cùng vuông góc với AB. Gọi O là trung điểm của AB. Kẻ một góc vuông đỉnh O có các cạnh góc vuông cắt tia Ax tại C, cắt tia By tại D
a. Chứng minh AC+BD=CD
b. Vẽ OH\(\bot\) CD. Chứng minh tam giác AHB vuông
Bài 15.Cho tam giác ABC ,trung tuyến CM, Qua điểm Q trên AB vẽ đường thẳng d song song với CM, Đường thẳng d cắt BC tại R và cắt AC tại P. Chứng minh nếu QA.QB = QP.QR thì tam giác ABC vuông tại C
Bài 17. Cho tam giác ABC (AB=AC) có góc ở đỉnh bằng 200; cạnh đáy là a ; cạnh bên là b . Chứng minh rằng a3 + b3 = 3ab2 Bài 18. Cho 4 điểm A,E,F,B theothứ tự ấy trên 1 đường thẳng . Trên cùng 1 nửa mặt phẳng bờ AB vẽ các hình vuông ABCD ; FGHE. Gọi O là giao điểm của AG và BH. Chứng minh rằng các tam giác OHE và OBC đồng dạng . Chứng minh rằng các đường thẳng CE và FD cùng đi qua O
cho tam giác ABC có góc A<90 độ .Trên nửa mặt phẳng không chứa điểm C, bờ là đường thẳng AB vẽ tia AF vuông góc với AB và AF = AB .Trên nửa mặt phẳng không chứa điểm B ,BỜ là đường thẳng AC vẽ BD vuông góc với AC và AH=AC. Gọi D là trung điểm của BC. Trên tia đối của tia DA lấy điểm I sao cho DI=DA. chứng minh rằng :
a) AI=FH
b) DA vuông góc với FH
1) Cho tam giác đều ABC,gọi M là trung điểm của BC.Một góc xMy = 60 độ quay quanh điểm M sao cho 2 cạnh Mx,My luôn cắt cạnh AB và AC lần lượt tại D và E.Chứng minh :
a) BD*Ce=BC2/4
b)ĐM,EM lần lượt là tia phân giác của các góc BDE và CED.
c)Chu vi tam giác ADE không đổi.
2)tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.
3)Cho tam giác ABC vuông tại A(AB<AC),có AH là đường cao. Trong nửa mặt phẳng bờ AH có chứa C vẽ hình vuông AHKE.
a)Chứng minh:C<45 độ
b)Gọi P là giao điểm của AC và KE.chứng minh AB=AP
c)Gọi Q là đỉnh thứ tư của hình bình hành APQB, gọi I là giao điểm của BP và AQ. Chứng minh ba điểm H,I,E thẳng hàng.
d)Chung minh : HE//QK
4)Cho tam giác DBC nhọn . Kẻ BM vuông CD(M thuộc CD),CA vuông BD (A thuộc BD).gọi I là trung điểm của AB ,qua I kẻ đường thẳng vuông góc với AB và cắt CB tại O;qua M kẻ đường thẳng vuông góc với MO cắt DA tại K . Chứng minh KA*KB=KM2
cần làm 1 bài là dc rồi ạ
bài 5.cho tam giác abc và abd có đỉnh vuông c và d nằm trên nửa mặt phẳng bờ ab gọi p là giao điểm ac và bd chứng minh rằng a; ab.bi=bp.bd
b; ab.ai=ac.ap
c;ab^2=ac+ap.bp.bd
Bài 6. Cho ABC vuông tại A, có AB=24cm, AC= 18cm. Từ trung điểm M của BC kẻ đường vuong góc với BC cắt AB và AC tại E và D. Tính DC ; DM và EC
c. AB² = AC.AP + BP.BD
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF