Ta có:
`a^2+b^2+1>=ab+a+b`
`2(a^2+b^2+1)>=2(ab+a+b)`
`2(a^2+b^2+1)-2(ab+a+b)>=0`
`2a^2+2b^2+2-2ab-2a-2b>=0`
`(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)>=0`
`(a-b)^2+(a-1)^2+(b-1)^2>=0`
Vì: `(a-b)^2>=0\AAa,b`
`(a-1)^2>=0\AAa`
`(b-1)^2>=0\AAb`
Suy ra: `(a-b)^2+(a-1)^2+(b-1)^2>=0` (đúng)
Dấu "=" xảy ra khi: `{(a-b=0),(a-1=0),(b-1=0):}`
`->a=b=1`
Vậy: `...`