ta co:
a-b=a^3+b^3
a-b-b^3=a^3
Mà một số luôn nhỏ hơn hoặc bằng chính nó lũy thừa 3
Nhưng a-b-b^3=a^3 nên b=0
Mà a=a^3 suy ra a=1
ta co:
a-b=a^3+b^3
a-b-b^3=a^3
Mà một số luôn nhỏ hơn hoặc bằng chính nó lũy thừa 3
Nhưng a-b-b^3=a^3 nên b=0
Mà a=a^3 suy ra a=1
a) Cho hai số dương thỏa mãn điều kiện a - b = a3 + b3. Chứng minh rằng a2 + b2 < 1.
b) Cho a, b, c, d thuộc Z thỏa mãn a3 + b3 = 2(c3 - 8d3). Chứng minh rằng a + b + c + d chia hết cho 3.
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng abc (1 + a^2)(1 + b^2)(1 + c^2) ≤ 8
cho 3 số dương a b c thỏa mãn abc=1. chứng minh rằng:(a+b)(b+c)(c+a) > hoặc = 2(1+a+b+c)
Cho 2 số dương a, b thỏa mãn điều kiện:
a3 + b3 = a-b. Chứng minh rằng: a2 + b2 < 1
Cho a,b,c là các số dương thỏa mãn 3(ab+bc+ac)=1. Chứng minh rằng a/(a^2-bc+1) +b/(b^2-ac+1) + c/(c^2-ab+1) > 1/(a+b+c)
Cho a, b, c là ba số dương thỏa mãn \(abc\)=1. Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}\)+\(\dfrac{1}{b^3\left(a+c\right)}\)+\(\dfrac{1}{c^3\left(a+b\right)}\)≥\(\dfrac{3}{2}\)
Cho các số dương a và b thỏa mãn : \(a^3+b^3=a-b\)
Chứng minh rằng \(a^2+b^2+ab< 1\).
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh rằng ∑\(\dfrac{1}{a+3b}\)≥ ∑\(\dfrac{1}{a+3}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh rằng ∑\(\dfrac{1}{a+3b}\)≥ ∑\(\dfrac{1}{a+3}\)