a:
Gọi hai lực đồng quy đề bài cho lần lượt là \(\overrightarrow{F_1};\overrightarrow{F_2}\)
Gọi hợp lực của \(\overrightarrow{F_1};\overrightarrow{F_2}\) là \(\overrightarrow{F}\)
Do đó, ta có: \(\overrightarrow{F}=\overrightarrow{F_1}+\overrightarrow{F_2}\)
=>\(\left|\overrightarrow{F}\right|=\sqrt{F_1^2+F_2^2+2\cdot F_1\cdot F_2\cdot cos\left(\overrightarrow{F_1},\overrightarrow{F_2}\right)}\)
=>\(F=\sqrt{18^2+24^2+2\cdot18\cdot24\cdot cos25}\simeq41,02\left(N\right)\)
b: \(F=31N\)
=>\(\sqrt{F_1^2+F_2^2+2\cdot F_1\cdot F_2\cdot cos\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)}=31\)
=>\(900+2\cdot18\cdot24\cdot cos\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)=961\)
=>\(864\cdot cos\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)=61\)
=>\(cos\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)=\dfrac{61}{864}\)
=>\(\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)\simeq86^0\)