Cho 2 đường tròn (O;R) và (O',R) cắt nhau tại A và B, trong đó tâm của đường tròn này nằm trên đường tròn kia
a) tg AOBO' là hình gì?
b) Tính độ dài các cung AB của mỗi đường
c) Tính diện tích AOBO'
Cho hai đường tròn (O; R) và (O’ ; R’) cắt nhau tại A ,B .Hãy so sánh R và R’ trong các trường hợp sau: Số đo cung nhỏ AB của (O ;R) lớn hơn số đo cung nhỏ AB của (O’ ;R’)
Cho đường tròn (O; R) và A thuộc (O). Vẽ liên tiếp các cung AB, BC, CD sao cho AB= R; BC = \(R\sqrt{2}\); CD= \(R\sqrt{3}\)
a) Tính số đo các cung nhỏ : AB, BC, CD, DA
b) Các tiếp tuyến tại C và D cắt nhau ở M. Tính OM và diện tích tam giác MCD theo R
c) Chứng tỏ rằng tứ giác ABCD là hình thang cân và tính diện tích theo R
d) I, H là các điểm thuộc cung AD sao cho AH= DI và hai dây AH, DI cắt nhau ở N. Chứng minh ON vuông góc AD
Cho đường tròn (O;R) có AB là một dây cố định (AB < 2R) . Trên cung lớn AB lấy 2 điếm C ; D sao cho AD // BC
a) Kẻ các tiếp tuyến với đường tròn (O;R) tại A ; D , chúng cắt nhau tai I . Chứng minh AODI là tứ giác nội tiếp .
b) Gọi M là giao điểm của AC và BD . Chứng minh rằng điểm M thuộc đường tròn cố định khi C ; D di chuyển trên cung lớnn AB sao cho AD //BC
c) Cho biết AB = R và BC = R . Tính điện tích tứ giác ABCD theo R
Cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài tại A (R=2R'). Điểm B thuộc đường tròn (O;R) sao cho AB=R. Điểm M thuộc cung lớn AB của đường tròn (O;R) sao choMA<=MB . Nối MA cắt đường tròn (O';R') tại N. Từ N kẻ đường thẳng song song với AB cắt đường tròn (O';R') tại E, cắt MB tại F.
1. Chứng minh: Tam giác AOM đồng dạng tam giác AO'N
2. Chứng minh độ dài đoạn NF không đổi khi M chuyển động trên cung lớn AB của đường tròn (O;R).
3. Chứng minh ABFE là hình thang cân
4. Tìm vị trí của điểm M để diện tích tứ giác ABFN lớn nhất.
Cho hai đường tròn (O; R) và (O’ ; R’) cắt nhau tại A ,B .Hãy so sánh R và R’ trong các trường hợp sau: Số đo cung nhỏ AB của (O ;R) nhỏ hơn số đo cung nhỏ AB của (O’ ;R’)
Bài 1: Cho đường tròn (O;R).Một điểm A ở bên ngoài đường tròn sao cho OA= 2R.Vẽ các tiếp tuyến AB và AC đến (O) (A, B là hai tiếp điểm)
a. Tính số đo các góc AOB và BOC
b.Tính số đo cung nhỏ và cung lớn BC
Bài 2: Cho nửa đường tròn (O) đường kính AB, M là điểm tùy ý trên nửa đường tròn (M khác A,B).Kẻ MH ⊥ AB (H ∈ AB) Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn.Vẽ hai nửa đường tròn tâm O1, đường kính AH và tâm O2, đường kính BH. MA và MB cắt hai nửa đường tròn O1 và O2lần lượt tại P và Q.
a. Chứng minh MH = PQ
b. Chứng minh ΔMPQ ᔕ ΔMBA
c. Chứng minh PQ là tiếp tuyến chung của 2 đường tròn O1 và O2
Cho hai đường tròn đồng tâm (O;R) và (O; ). Trên đường tròn nhỏ lấy một điểm M . Tiếp tuyến tại M của đường tròn nhỏ cắt đường tròn lớn tại A và B. Tia OM cắt đường tròn lớn tại C. a) Chứng minh rằng = ( cung CA bằng cung CB) b) Tính số đo của hai cung AB