Cho hai đường tròn (o) và (o') cắt nhau tại hai điểm A và B gọi M là điểm tùy ý trên đường thẳng AB nằm ngoài đoạn AB . Qua M vẽ hai cát tuyến MCD và MC'D' của đường tròn (o) và (o'). Chứng minh tứ giác CDC'D' nội tiếp.
Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A và B gọi M là điểm tùy ý trên đường thẳng AB nằm ngoài đoạn AB . Qua M vẽ hai cát tuyến MCD và MC'D' của đường tròn (O) và (O'). Chứng minh tứ giác CDC'D' nội tiếp
Cho điểm M nằm ngoài đường tròn (O;R). Qua M vẽ hai tiếp tuyến MA, MB và cát tuyến MCD (A,B,C,D thuộc đường tròn tâm O), tia MC nằm giữa hai tia MO và MA. Gọi H là giao điểm của AB và MO.
a/ CM tứ giác MAOB nội tiếp.
b/ Gọi K là trung điểm CD. Chứng minh 5 điểm M, A, K, O, B cùng thuộc một đường tròn. Từ đó suy ra KM là phân giác của góc AKB.
c/ Đường thẳng OK cắt đường thẳng AB tại N. Chứng minh ND là tiếp tuyến đường tròn (O)
Cho đường tròn O bán kính R và hai điểm A, B nằm trên đường tròn (AB không là đường kính). Các tiếp tuyến tại A, B của đường tròn cắt nhau tại M. Kẻ cát tuyến MCD với đường tròn (C nằm giữa M và D).
a)Chứng minh tứ giác MAOB là nội tiếp.
b) Chứng minh MB2 = MC.MD
Từ một điểm M bên ngoài đường tròn (O) vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O), ở đây A, B là các tiếp điểm và C nằm giữa M, D.
a) Chứng minh MA2 = MC.MD ;
b) Gọi I là trung điểm của CD. Chứng minh rằng 5 điểm M, A, O, I, B cùng nằm trên một đường tròn ;
c) Gọi H là giao điểm của AB và MO. Chứng minh tứ giác CHOD nội tiếp được đường tròn. Suy ra AB là đường phân giác của góc CHD ;
d) Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). Chứng minh A, B, K thẳng hàng.
Lấy Điểm A nằm ngoài đường tròn ( O;R) sao cho AO = 3R. Vẽ hai tiếp tuyến AB; AC với đường tròn ( B;C là tiếp điểm). a) Chứng minh: Tứ giác ABOC nội tiếp đường tròn. b) Qua A vẽ cát tuyến AEF với (O) sao cho E nằm giữa A và F và cắt đoạn thẳng OB tại K. Chứng minh: AC^2 = AE.AF c) Từ E vẽ đường thẳng vuông góc với OB cắt BC tại M, I là trung điểm của EF. Chứng minh: MI // FB.
Cho điểm M nằm ngoài (O;R). Qua M vẽ hai tiếp tuyến MA, MB và cát tuyến MCD (tia MC nằm giữa tia MO và MA). Gọi H là giao điểm của OM và AB.
a/ Chứng minh tứ giác MAOB nội tiếp
b/ K là trung điểm CD. Chứng minh 5 điểm M, A, K, O, B cùng thuộc 1 đường tròn. Suy ra KM là phân giác của góc AKB.
c/ Đường thẳng OK cắt AB tại N. Chứng minh ND là tiếp tuyến của (O)
d/ Vẽ đường kính BE của đường tròn (O). Từ C vẽ đường thẳng song song với OM cắt các đường thẳng BE và ED lần lượt tại I và P. Chứng minh I là trung điểm CP.
Cho điểm A là một điểm nằm bên ngoài đường tròn (O), gọi AB và AC lần lượt là hai tiếp tuyến tại B và C của đường tròn (O), vẽ cát tuyến ADE của đường tròn (O) ( Biết điểm D nằm giữa hai điểm A và E, đường thẳng AE không đi qua điểm O).
1) Chứng minh tứ giác ABOC là tứ giác nội tiếp đường tròn. Xác định tâm của đường tròn ngoại tiếp tứ giác ABOC.
2) Chứng minh : AB2=AD.AE
3) Đường thẳng đi qua điểm C song song với đường thẳng AE cắt đường tròn (O) tại điểm M, với M khác C. Gọi H là giao điểm của hai đường thẳng BM và AE. Chứng minh HD = HE