Cho đường tròn tâm O bán kính R và dây AB ko qua O gọi I là trung điểm của AB tiếp tuyến tại Q của đường tròn tâm O cắt đường thẳng OI tại S a/ CmmSB là tiếp tuyến đường tròn tâm O b/cho bik R=5cm AB =8cm Tính độ dài tiếp tuyến SA SB
Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AC>CB, C khác A và B. Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I, kẻ tiếp tuyến Ax của đường tròn (O;R), tia OI cắt Ax tại M. Gọi giao điểm BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC=KH
Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD.
d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
Câu 4: (3,0 điểm). Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H. a/ Tính OH. OM theo R. b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn. c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R)
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng
Mng giúp e với !!!
Từ điểm I bên ngoài đường tròn (O;R) vẽ hai cát tuyến IAB và ICD ( không qua tâm O ). Gọi M và N lần lượt là trung điểm của hai dây AB và CD
a) Cminh: O,I,M,N cùng thuộc một đường tròn
b) Đường tròn (OIMN) cắt ( O) tại E và F. Cminh: IE,IF là hai tiếp tuyến của (O)
c) EF cắt OM tại K và cắt OI tại H. Cminh: OM.OK=OH.OI=R2
Từ một điểm M ở ngoài (O;R) sao cho OM=2R. Vẽ hai tiếp tuyến MA,MB (A,B là tiếp điểm) ,gọi H là giao điểm OM và AB.
a) Cm: OH vuông góc AB và tính HM theo R.
b) Cm: 4 điểm M,A,O,B thuộc 1 đường tròn, ác địch tâm I của đường tròn.
c) Tia OI cắt (O;R) tại C. Cm MC.IH=MI.HC
Cho (O;R) và dây AB khác đường kính.Kẻ OI_|_AB tại I, tiếp tuyến của đường tròn (O) tại A cắt đường thẳng OI tại M. a.CMR: OI.OM=R². b.CMR: MB là tiếp tuyến của đường tròn (O) và CM: 4 điểm A,B,M,O cùng thuộc 1 đường tròn.
Cho đường tròn (O;R) và một điểm I nằm bên trong đường tròn. Hai dây AB và CD cùng đi qua I.Tiếp tuyến tại A và B của đường tròn cắt nhau tại P, tiếp tuyến tại C và D căt nhau tại Q. Gọi M là giao điểm của OQ và CD, N là giao điểm của OP và AB. CMR: OI vuông góc với PQ
Cho đường tròn (O; R) và đường thẳng xy không có điểm chung với đường tròn. Lấy một điểm A bất kỳ thuộc xy. Từ A kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Ọua B kẻ đường thẳng vuông góc với AO, cát AO tại K và cắt đường tròn (O) tại điểm thứ hai là c.
a) Tính độ dài OK nếu R = 5cm, OA = 10 cm.
b) Chứng minh ràng: AC là tiếp tuyến của đường tròn (O).
c) Kẻ OH vuông góc với xy tại H, BC cắt OH tại I. Chứng minh rằng: Khi A di chuyển trên đường thẳng xy thì độ dài đoạn thẳng OI không đổi.