Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng chéo nhau ∆ : x - 2 2 = y - 3 - 4 = z - 1 - 5 và d : x - 1 1 = y - 2 = z + 1 2 . Khoảng cách giữa hai đường thẳng ∆ và d bằng
A. 5 5
B. 45 14
C. 5
D. 3
Trong không gian Oxyz, cho hai điểm A(1;-2;-3),B(-1;4;1). Đường thẳng qua trung điểm của đoạn thẳng AB và song song với đường thẳng d: x + 2 1 = y - 2 - 1 = z + 3 2 là
A. x/1=(y-1)/1=(z+1)/2.
B. x/1=(y-1)/(-1)=(z+1)/2.
C. (x-1)/1=(y-1)/(-1)=(z+1)/2.
D. x/1=(y+2)/(-1)=(z+2)/2
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong không gian Oxyz, cho hai đường thẳng d : x − 1 − 2 = y + 2 1 = z − 4 3 v à d ' : x = − 1 + t y = − t z = − 2 + 3 t cắt nhau. Phương trình mặt phẳng chứa d và d' là
A. 6 x + 9 y + z + 8 = 0
B. 6 x − 9 y − z − 8 = 0
C. − 2 x + y + 3 z − 8 = 0
D. 6 x + 9 y + z − 8 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng a : x 1 = y 1 = z - 2 ; b : x + 1 - 2 = y 2 = z + 1 - 1 và mặt phẳng ( P ) : x - y - z = 0 . Viết phương trình của đường thẳng d song song với (P), cắt a và b lần lượt tại M và N mà M N = 2 .
A. d : 7 x - 4 3 = 7 y + 4 8 = 7 z + 8 - 5
B. d : 7 x + 4 3 = 7 y - 4 8 = 7 z + 8 - 5 .
C. d : 7 x - 1 3 = 7 y - 4 8 = 7 z + 3 - 5
D. d : 7 x - 1 3 = 7 y + 4 8 = 7 z + 8 - 5
Cho hai điểm A(1;2;3), B(2;0;4) và đường thẳng ( d ) : x - 1 1 = y - 2 1 = z - 1 - 2 . Mặt phẳng qua A, B và song song với (d) có phương trình là
A. x+y+z-6=0
B. 2x+y+z-4=0
C. x-y+z-6=0
D. x-y+2z-10=0
Trong không gian Oxyz, cho 2 đường thẳng chéo nhau d: d : x - 3 - 4 = y + 2 1 = z + 1 1 và d ' : x - 6 = y - 1 1 = z - 2 2 . Phương trình nào dưới đây là phương trình đường thẳng vuông góc chung của d và d’
A. x + 1 1 = y + 1 2 = z 2
B. x - 1 1 = y - 1 2 = z 2
C. x + 1 1 = y - 1 2 = z 2
D. x - 1 1 = y - 1 2 = z + 1 2
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 2 và hai đường thẳng d: x - 2 1 = y 2 = z - 1 - 1 ,Δ: x 1 = y 1 = z - 1 - 1 . Phương trình nào dưới đây là phương trình mặt phẳng tiếp xúc với (S) và song song với d và Δ
A. y+z+3 = 0.
B. x+y+1 = 0.
C. x+z-1 = 0.
D. x+z+1 = 0