Để d1 // d2 khi \(\hept{\begin{cases}m^2-1=5-m\\m+2\ne2m+5\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2+m-6=0\\m\ne-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=2;m=-3\\m\ne-3\end{cases}}\Leftrightarrow m=2\)
Để d1 // d2 khi \(\hept{\begin{cases}m^2-1=5-m\\m+2\ne2m+5\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2+m-6=0\\m\ne-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=2;m=-3\\m\ne-3\end{cases}}\Leftrightarrow m=2\)
Cho hai đường thẳng \(\left(d_1\right)\):\(y=\left(m^2-1\right)x+m^2-5\) với \(\left(m\ne\pm1\right)\); \(\left(d_2\right):x+1\);\(\left(d_3\right):y=-x+3.\).Xác định m để 3 đường thẳng \(d_1\),\(d_2\),\(d_3\) đồng quy
Tìm các giá trị của m để hai đường thẳng song song với nhau:
\(\left(d_1\right):y=\left(2-m^2\right)x+m-5\) và \(\left(d_2\right)y=mx+3m-7\)
Cho các đường thẳng \(y=x+1\left(d_1\right),y=3x-2\left(d_2\right),y=2m+3x-1\left(d_3\right)\)
a) Vẽ đồ thị hàm số \(\left(d_1\right),\left(d_2\right)\) trên cùng hệ trục tọa độ
b) Tìm m để 3 đường thẳng đồng quy
c) Cm rằng \(\left(d_3\right)\) để luôn đi qua 1 điểm với mọi giá trị của m
Tìm các giá trị của m để hai đường thẳng:
\(\left(D_1\right):y=2x+3\) và \(\left(D_2\right):y=\left(m-1\right)x+2\)
a, Cắt nhau.
b, Song song với nhau.
c, Vuông góc với nhau.
8. Cho các đường thẳng
\(d:y=\left(m-2\right)x+m+7;\)
\(d_1:y=-mx-3+2m;\)
\(d_2:y=-m^2x-2m+1;\)
\(d_3:y=-\dfrac{2}{3}x+\dfrac{5}{3};\)
\(d_4:y=-\dfrac{1}{6}\left(m+3\right)x=+4.\)
Tìm m để
a.\(d//d_1\)
b.\(d\equiv d_2\)
c.\(d\) cắt \(d_3\) tại điểm có tung độ \(y=\dfrac{1}{3}\)||
d. \(d\perp d_4\)
1. Viết phương trình đường thẳng \(\left(d_1\right)\)đi qua 2 điểm A(-2,3) và B(1,-3)
2. Cho đường thẳng \(\left(d_2\right)\): y = mx + 2. Xác định m để dường thẳng \(\left(d_2\right)\) song song với đường thẳng \(\left(d_1\right)\)
Cho y=(m+1)x-2m-5 \(\left(d_1\right)\) ; y=-2x \(\left(d_2\right)\) và y=9-5x \(\left(d_3\right)\) . Tìm m để 3 đường thẳng trên đồng quy
Cho 2 đường thẳng
(d₁): y = \(\left(2+m\right)x+1\:\:\left(m\ne-2\right)\)
(d₂): y = \(\left(1+2m\right)x+2\:\left(m\ne-\dfrac{1}{2}\right)\)
a) Tìm m để (d₁) và (d₂) cắt nhau.
b) Với m = -1, vẽ (d₁) và (d₂) trên cùng một mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của 2 đường thẳng đó.
c) Tìm khoảng cách lớn nhất từ A(1;3) đến (d₁).
11. Viết pt đường thẳng \(d\) trong các trường hợp sau
a. \(d\) đi qua \(M\left(2;-3\right)\) và song song với \(d_1:y=-2x+5;\)
b. \(d\) đi qua \(N\left(-1;-2\right)\) và vuông góc với \(d_2:y=-x-8;\)