a: P(x)=7x^5+1/2x^2-x-9/2
Q(x)=-7x^5+1/4x^2+x+5/2
M(x)=P(x)+Q(x)=3/4x^2-2
M(x)=0
=>3/4x^2-2=0
=>x^2=2:3/4=2*4/3=8/3
=>\(x=\pm\dfrac{2\sqrt{6}}{3}\)
b: N(x)=P(x)-Q(x)
=7x^5+1/2x^2-x-9/2+7x^5-1/4x^2-x-5/2
=14x^5-1/4x^2-2x-7
a: P(x)=7x^5+1/2x^2-x-9/2
Q(x)=-7x^5+1/4x^2+x+5/2
M(x)=P(x)+Q(x)=3/4x^2-2
M(x)=0
=>3/4x^2-2=0
=>x^2=2:3/4=2*4/3=8/3
=>\(x=\pm\dfrac{2\sqrt{6}}{3}\)
b: N(x)=P(x)-Q(x)
=7x^5+1/2x^2-x-9/2+7x^5-1/4x^2-x-5/2
=14x^5-1/4x^2-2x-7
Bài tập 2: Cho hai đa thức:
P(x) = 5x³ - 7x² + 2x* - 5x³ + 2
Q(x) = 2x - 4x² - 2x³ + 5 + 1/2x
a) Sắp xếp các đa thức trên theo luỹ thừa tăng của biến.
b) Tính P(x) + Q(x); P(x) - Q(x).
c) Tìm bậc của đa thức tổng, đa thức hiệu.
Cho các đa thức M(x)=-2x^3+4x+x^2-3 và N(x)= 2x^3+x2-5-4x 1) Tính P(x) = M(x) + N(x) 2) Tìm nghiệm của đa thức P(x) 3) Tìm đa thức Q(x) biết Q(x) + N(x) = M(x)
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^5\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến
b) Tìm hệ số cao nhất và hệ số tự do của đa thức P(x)
c)Tính M(x)=P(x)+Q(x)
d)Tính M(2), M(-2),M(\(\dfrac{1}{2}\))
Các bạn chỉ giải phần D thôi nha còn những bạn muốn giải hết thì cũng không sao
cho đa thức: M(x) = 5x^4 - 2x^3 + 5x^2 - 2x^4 - 4x+1
N(x) = -3x^4 - 3x^2 + 7x - 2x^3 + 5+4x^3 - 2x^2
a,thu gọn và sắp xếp đa thức trên theo lũy thừa giảm dần của biến
b, tính P(x) = M(x) + N(x); Q(x) = M(x) - N(x)
c, tìm nghiệm của đa thức P(x)
Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a}
\)
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^5\)
c) Tính M(x)=P(x) + Q(x)
d) Tính M(2),M(-2),M(\(\dfrac{1}{2}\))
1) Cho f(x)=9-x^5+4x-2x^3+x^2-7x^4
g(x)=x^5-9+2x^2+7x^4+2x^3-3x
A) sắp xếp các đa thức sau theo lũythừa giảm dần của biến
b) tính h(x)=f(x)+g(x)
C) tìm nghiệm của (x)
2)cho đa thức M(x)=a+b×(x-1)+c×(x-1)×(x-2). Tìm a;b;c biết M(1)=1; M(2)=3 và M(0)=5
3) cho đa thức f(x)=mx^2-3x+2. Tìm m biết x=-1 là nghiệm của f(x)
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^5\)
Tính M(\(\dfrac{1}{2}\))
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^{^{ }5}\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến
b) Tìm hệ số cao nhất và hệ số tự do của đa thức P(x)