\(P\left(x\right)=-x^3+2x+1\)
\(Q\left(x\right)=2x^3+2x^2+x-5\)
b)\(P\left(x\right)+Q\left(x\right)=-x^3+2x+1+2x^3+2x^2+x-5\)
\(P\left(x\right)+Q\left(x\right)=x^3+2x^2+3x-4\)
\(P\left(x\right)-Q\left(x\right)=-x^3+2x+1-2x^3-2x^2-x+5\)
\(P\left(x\right)-Q\left(x\right)=-3x^3-2x^2+x+6\)
a) P(x) = 1 - x³ + 2x
= -x3 + 2x + 1
Q(x) = 2x² + 2x³ + x - 5
= 2x3 + 2x2 + x - 5
b) P(x) + Q(x) = -x3 + 2x + 1 + 2x3 + 2x2 + x - 5
= (-x3 + 2x3 ) + 2x2 + (2x + x) + ( 1 - 5)
= x3 + 2x2 + 3x - 4
P(x) - Q(x) = -x3 + 2x + 1 - ( 2x3 + 2x2 + x - 5)
= -x3 + 2x + 1 - 2x3 - 2x2 - x + 5
= (-x3 - 2x3) - 2x2 + (2x - x ) + ( 1+ 5)
= -3x3 - 2x2 + x + 6