Diện tích hình phẳng giới hạn bởi parabol y = x - 2 2 , đường cong y = x 3 và trục hoành bằng (phần tô đậm trong hình vẽ bên)
A. 11 2
B. 73 12
C. 7 12
D. 5 2
Cho (H) là hình phẳng giới hạn bởi parabol y = 1 4 x 2 + 1 với 0 ≤ x ≤ 2 2 , nửa đường tròn y = 8 - x 2 và trục hoành, trục tung (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A. 3 π + 14 6
B. 3 π + 2 3
C. 3 π + 4 3
D. c
Cho (H) là hình phẳng giới hạn bởi parabol y = 1 4 x 2 + 1 (với 0 ≤ x ≤ 2 2 ), nửa đường tròn y = 8 - x 2 và trục hoành, trục tung (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
A. 3 π + 14 6
B. 2 π + 2 3
C. 3 π + 4 6
D. 3 π + 2 3
Cho hình (H) là hình phẳng giới hạn bởi parabol y = x 2 - 4 x + 4 , đường cong y = x 3 và trục hoành (phần tô đậm trong hình vẽ). Tính diện tích S của hình (H)
A. S = 11 2
B. S = 7 2
C. S = 20 3
D. S = - 11 2
Cho hình (H) là hình phẳng giới hạn bởi parabol y = x 2 - 4 x + 4 đường cong y = x 3 và trục hoành (phần tô đậm trong hình vẽ). Tính diện tích S của hình (H).
A. S = 11 2
B. S = 7 12
C. S = 20 3
D. S = - 11 2
Cho (H) là hình phẳng giới hạn bởi parabol y = 2 x 2 4 đường cong y = 1 - x 2 4 (với 0 ≤ x ≤ 2 ) và trục hoành (tham khảo hình vẽ bên).
Diện tích của (H) bằng
A. 3 π - 2 12
B. 3 π + 4 2 - 6 12
C. 4 π + 3 2 - 8 12
D. π + 2 - 2 3
Cho (H) là hình phẳng giới hạn bởi Parabol y = 3 x 2 , cung tròn có phương trình y = 4 − x 2 0 ≤ x ≤ 2 và trục hoành (phần tô đậm trong hình vẽ). Diện tích của (H) bằng:
A. 4 π + 3 12 .
B. 4 π − 3 6 .
C. 4 π + 2 3 − 3 6 .
D. 5 3 − 2 π 3 .
Gọi H là hình phẳng giới hạn bởi đồ thị hàm số y = x , cung tròn có phương trình y = 6 - x 2 - 6 ≤ x ≤ 6 và trục hoành (phần tô đậm trong hình vẽ bên). Tính thể tích V của vật thể tròn xoay sinh bởi khi quay hình phẳng H quanh trục
A. V = 4 π 6 + 22 π
B. V = π 6 - 22 π 3
C. V = 8 π 6 + 11 π
D. V = 4 π 6 + 22 π 3
Cho (H) là hình phẳng giới hạn bởi parabol y = 2 x 2 4 , đường cong 1 - x 2 4 (với 0 ≤ x ≤ 2 ) và trục hoành (tham khảo hình vẽ bên). Diện tích của (H) bằng
A. 3 π - 2 12
B. 3 π + 4 2 - 6 12
C. 4 π + 3 2 - 8 12
D. π + 2 - 2 3