Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Cho tam giác ABC vuông tại A, AD là phân giác \(\widehat{BAC}\) ( D ∈ BC ). Gọi N là hình chiếu vuông góc của D trên AC và M là hình chiếu vuông góc của D trên AB.
1> Tứ giác AMDN là hình gì? Tại sao?
2> Cho AB = 3cm ; AC = 4cm . Tính BD, DC và diện tích tứ giác AMDN
3> MC cắt AD tại I và cắt DN tại K. Chứng minh rằng \(\dfrac{1}{MI}=\dfrac{1}{MK}+\dfrac{1}{MC}\)
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
CÁC BN ƠI GIÚP MIK VS !!!!!!!!
1.Cho hình thang cân ABCD(AB//CD), góc BDC=45o. Gọi O là giao điểm của AC và BD.
a. CM tam giác DOC vuông cân
b. Tính diện tích của hình thang ABCD, biết BD=6cm
2. a. Tìm x của tứ giác ABCD, biết góc A=60 độ, góc C= 90 độ, góc D=63 độ
b. Cho hình thang ABCD(AB//CD). E,F lần lượt là trung điểm AD, BC. Tính độ dài đoạn thẳng EF, biết AB=3cm,CD=9cm
cho hình thang cân ABCD ( AB//CD ) AB=4cm CD=10cm AD=5cm. Trên tia đối của tia BD lấy điểm E sao cho BE=BD. Gọi H là chân đường vuông góc kẻ từ E đến BC. Tính CH
Cho hình thang vuông ABCD có AB // CD, góc A = góc D = 90 độ, AB + DC = BC. Gọi I là giao điểm của AC và BD, trên cạnh BC lấy điểm M sao cho MB = AB. MI cắt AD tại N. Chứng minh: Mi vuông góc với AD.
Cho tam giác ABC vuông tại A (AB>AC) đường cao AH. Trên tia HB lấy điểm D sao cho HA = HD. Từ D kẻ đường thẳng vuông góc với BC cắt AB tại E.
a, C/m BE/EA = BD/DH
b, gọi O là giao điểm của AD,HE. C/m OE/EH = OD/DA
c, Gọi HK là tia pg của góc AHB, K thuộc AB. C/m AE.KB = AK.AB
d, Gọi M là gđ của AD,HK, N là gđ của BO,ED. C/m MN//AB
Cho hình chữ nhật ABCD, hai đường chéo AC và BD cắt nhau tại O
a) biết AB= 4cm, BC= 3cm. Tính BD,AO
b) Kẻ AH vuông góc với BD. Gọi M,N,I lần lượt là trung điểm AH,DH,BC. Chứng minh MN=BI
c) chứng minh BM // IN
d) Chứng minh góc ANI= 90o