Bạn nhân mỗi vế cho a+b+c rùi nó sẽ ra vế phải.
Đáp án là 0
Bạn nhân mỗi vế cho a+b+c rùi nó sẽ ra vế phải.
Đáp án là 0
Cho a,b,c thỏa mãn a+b+c=0
Tính\(G=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
\(D=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)
Cho \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)Tính\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
Bài 1.
Cho a+b+c=0. Tính:
\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Bài 2.
Cho a-b-c=0. Tính:
\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Bài 3. Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0(a,b,c\ne0)\)
Rút gọn: \(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
Bài 4. Cho \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
Rút gọn:\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho :\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
Tính:
\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
Cho a, b, c > 0. CM:
a)\(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)
b)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{b+c}{a^2+bc}+\frac{c+a}{b^2+ac}+\frac{a+b}{c^2+ab}\)
c)\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Làm được câu nào thì làm giúp mình câu đó nhé!
Cho a,b,c là 3 số thực thõa mãn \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{4}{a+b+c}\)
Tính \(M=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Cho các số thực a,b,c thỏa mãn \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{4}{a+b+c}\)
Tính giá trị của M=\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
cho a, b, c>0. CMR a\(\frac{a^3}{b}\ge a^2+ab-b^2\)
CM \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a, b, c là độ dài 3 cạnh của tam giác CM \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)