cho \(y=f\left(x\right)=\left(m-3\right)x-2m+1\)
tìm đk của tham số m để \(f\left(x\right)>0\) \(\forall x\in\left[3;4\right]\)
Cho hs
\(f\left(x\right)=-\dfrac{mx^3}{3}+3x^2-mx+1\)
tìm m để
a) \(f'\left(x\right)\le0,\forall x\in R\)
b) pt\(f'\left(x\right)=0\) có 2 nghiệm âm phân biệt
Cho f(x)=a0+a1.cosx+a2.cos2x+...+an.cosnxf(x)=a0+a1.cosx+a2.cos2x+...+an.cosnx
biết f(x)>0∀x∈Rf(x)>0∀x∈R
cmr a0>0
Cho biểu thức $f\left( x \right)=\dfrac{1}{3}{{x}^{3}}+\left( m-1 \right){{x}^{2}}-\left( 2m-10 \right)x-1$ với $m$ là tham số thực. Tìm tất cả các giá trị của $m$ để ${f}'\left( x \right)>0$ $\forall x\in \mathbb{R}$.
Cho f(x)=a0+a1.cosx+a2.cos2x+...+an.cosnxf(x)=a0+a1.cosx+a2.cos2x+...+an.cosnx
biết f(x)>0∀x∈Rf(x)>0∀x∈R
cmr a0>0. Được tick thanks.
Cho khai triển: \(\left(1+x+x^2+...+x^{2015}\right)^{2016}=a_0+a_1x+a_2x^2+...+a_{4062240}x^{4062240}\). Tính giá trị biểu thức: \(T=C^0_{2016}a_{2016}-C^1_{2016}a^{2015}+C^2_{2016}a_{2014}-...+C^{2016}_{2016a_{ }0}\)
Cho \(f\left(x\right)=ax^2+bx+c\left(a,b,c\inℤ,a>0\right)\) sao cho phương trình \(f\left(x\right)=0\) có 2 nghiệm phân biệt thuộc \(\left(0;1\right)\). Tìm đa thức \(f\left(x\right)\) thỏa điều kiện trên mà \(a\) nhỏ nhất.
Cho đa thức \(P\left(x\right)\inℝ\left[x\right]\) bậc \(n\) có \(n\) nghiệm thực phân biệt. Hỏi \(P\left(x\right)\) có tối đa bao nhiêu hệ số bằng 0?
Tìm tất cả hàm số \(f:R\rightarrow R\) thoả mãn:
\(f\left(xf\left(y\right)-y\right)+f\left(xy-x\right)+f\left(x+y\right)=2xy,\forall x,y\in R\)
Em chỉ mới chứng minh được f là hàm lẻ ạ, mong mọi người giúp :'(