Cho hàm số y = f ( x ) = ln ( 1 + x 2 + x ) .
Tập nghiệm của bất phương trình
f ( a - 1 ) + f ( ln a ) ≤ 0 là:
Cho hàm số f(x) = log2x và g(x) = log2(4-x) . Tìm tập nghiệm của bất phương trình f(x + 1) < g(x + 2)
A. S = - ∞ ; 1 2
B. S = - 1 ; 1 2
C. S = (0; 2).
D. S = - ∞ ; 2
Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x
Cho f ( x ) = 1 2 . 5 2 x + 1 ; g ( x ) = 5 x + 4 x . ln 5 . Tập nghiệm của bất phương trình f ' ( x ) > g ' ( x ) là
A. x>1.
B. x>0.
C. 0<x<1.
D. x<0.
Cho F(x) là một nguyên hàm của hàm số 1 e x + 1 , thỏa mãn F(0) = –ln2. Tìm tập nghiệm S của phương trình F(x) + ln(ex + 1) = 3.
A. S = 3
B. S = - 3
C. S = ∅
D. S = ± 3
Phương trình 2 - f ( x ) = f ( x ) có tập nghiệm T 1 = 20 ; 18 ; 3 . Phương trình 2 g ( x ) - 1 + 3 g ( x ) - 2 3 = 2 g ( x ) có tập nghiệm T 2 = 0 ; 3 ; 15 ; 19 . Hỏi tập nghiệm của phương trình f ( x ) g ( x ) + 1 = f ( x ) + g ( x ) có bao nhiêu phần tử?
A. 4
B. 3
C. 11
D. 6
Nghiệm của bất phương trình log 2 3 x - 2 < 0 là:
A. x > 1 B. x < 1
C. 0 < x < 1 D. log 3 2 < x < 1
Nghiệm của bất phương trình log 2 ( 3 x - 2 ) < 0 là:
A. x > 1 B. x < 1
C. 0 < x < 1 D. log 3 2 < x < 1
Gọi S1 là tập nghiệm của bất phương trình log 2 ( x + 5 ) + log 1 2 ( 3 - x ) ≥ 0 và S2 là tập nghiệm của bất phương trình log2(x + 1) ≥ 1. Khẳng định nào dưới đây đúng ?
A. S 1 ∩ S 2 = [ 1 ; 3 )
B. S 1 ∩ S 2 = [ - 1 ; 3 )
C. S 1 ∩ S 2 = - 1 ; 1
D. S 1 ∩ S 2 = 1 ; 3