Cho Elip (E) : x 2 25 + y 2 9 = 1 Đường thẳng d: x+ 4= 0 cắt (E) tại hai điểm M; N . Khi đó:
A. M N = 9 25
B. M N = 18 25
C. M N = 18 5
D. M N = 9 5
Trong mặt phẳng tọa độ Oxy, cho các điểm M(0,4) và P(9, -3) .Tọa độ điểm N đối xứng với điểm M qua điểm P là : A. N(18,10) B. N(18, -10) C. N(9/2 ; 1/2) D. N(9; -7)
Cho hai điểm P(1;6) và Q(-3;-4) và đường thẳng △: 2x - y - 1 = 0.Tọa độ điểm N thuộc △ sao cho |NP - NQ| lớn nhất
A. N(-9;-19)
B. N(-1;-3)
C. M(1;1)
D. M(3;5)
Trong mặt phẳng với hệ trục tọa độ Oxy cho elip (E) có phương trình chính tắc \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\). Độ dài trục lớn của elip (E) là:
A. 10 B. 25 C. 9 D. 6
Cho điểm A (-5; 4), đường thẳng d qua A,d cắt 2 tia Ox, Oy lần lượt tại M(m; 0), N (n; b) sao cho tam giác MNO (O là gốc tọa độ) có diện tích nhỏ nhất.
Giúp e với ạ
Cho elip (E) có phương trình: x 2 100 + y 2 36 = 1
a, Hãy xác định tọa độ các đỉnh, các tiêu điểm của elip (E) và vẽ elip đó.
b, Qua tiêu điểm của elip dựng đường song song với Oy và cắt elip tại hai điểm M và N. Tính độ dài đoạn MN.
Xác định tham số của giá trị m trong các trường hợp sau: a) (P): y= x^2+6x-3 và đường thẳng d: y= -2xm-m^2 cắt nhau tại 2 điểm phân biệt A,B sao cho biểu thức P= 5( xA+xB)-2xA.xB đạt giá trị lớn nhất b) (P): y= x^2-2x-2 và đường thẳng d: y= x+m cắt nhau tại 2 điểm phân biệt A,B sao cho OA^2+OB^2 đạt GTNN
Cho hình bình hành ABCD có tâm I, đường thẳng qua B vuông góc với BD cắt AI tại M, đường thẳng qua D vuông góc với BD cắt AB tại N. Biết pt DM: x+y-4=0, điểm E(5;0) thuộc NI, trung điểm của BI là P(-1/2;-3). Tìm tọa độ A,B,C,D
Cho (c) ( x-3)²+(y-1)²=4 , A(4,5). Đường thẳng d đi qua A , cắt (c) tại 2 điểm M,N . Tính AM.AN