Cho đường tròn tâm O và dây AB không qua O. Gọi H là trung điểm AB, tia OH cắt cung lớn AB tại M. Một dây CD đi qua H
A) Chứng minh:Cung MA=cung MB
B) So sánh số đo các cung nhỏ AB và CD
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. 1.Chứng minh tứ giác BMFE nội tiếp. 2.Chứng minh BF vuông góc với AK và EK.EF = EA.EB 3.Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.
Cho đường tròn tâm O, 2 dây AB và CD bằng nhau và cắt nhau tại I sao cho D thuộc cung nhỏ AB. Chứng minh điểm O cách đều AD và CB.
Cho đường tròn tâm O có đường kính AB, vẽ dây cung CD vuông góc với OA. Lấy M trên cung nhỏ BC ( M ∉ B, C) MA cắt CD tại H. Trên MD lấy E sao cho MC= ME. Chứng minh ADEH nội tiếp
Cho đường tròn tâm O bán kính R ,vẽ các dây AB=R,CD=R√2,EF=R√3.Tính số đo các cung nhỏ AB,CD,EF(√ là kí hiệu căn,help mình với mng)
Cho đường tròn tâm O bán kính R ,vẽ các dây AB=R,CD=R√2,EF=R√3.Tính số đo các cung nhỏ AB,CD,EF(√ là kí hiệu căn,help mình với mng)
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F . Chứng minh: bốn điểm B E F I thuộc một đường tròn.
Cho đường tròn (O), dây AB bất kỳ không đi qua tâm. Trên cung nhỏ AB lấy hai điểm phân biệt C, D sao cho D nằm trên cung nhỏ AC và AD=BC. Chứng minh CD//AB
cho đường tròn tâm O đường kính AB. vẽ dây cung CD vuông góc với AB tại I(I nằm giữa A và O). lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F chứng minh:
IA.IB=IC.ID VÀ AE.AF=\(AC^2\)(Biết BEFI đã nội tiếp đường tròn)