Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F tương ứng là giao điểm của MC, MD với dây AB. Gọi I và J tương ứng là giao điểm của DE, CF với đường tròn (O). Chứng minh IJ song song với AB.
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DF
BÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DF
Bài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ dài 18 cm tính độ dài MC, MD
Bài 4 cho tam giác ABC cân nội tiếp đường tròn O
A chừng minh AO là đường trung trực của BC
B tính đường cao AH của tam giác ABC biết AC=40cm bán kình đường tròn O = 25 cm
Bài 5 cho đường tròn O đường kính AB dây CD vuông góc AB tại điểm M ,M thuộc OA
gọi I là một điểm thuộc OB .Các tia CI ,DI theo thứ tự cắt dường tròn tại E và F
A Cm tam giác ICD cân
gọi H,K theo thứ tự là chân các đường vuông góc kẻ từ O đến CE DF so sánh OH và OK
giúp mình với mình cảm ơn nhiều
Cho nửa đường tròn tâm O đường kính AB trên nửa đường tròn lấy điểm M, trên AB lấy điểm C sao cho AC < CB. Gọi Ax; By là 2 tiếp tuyến của nửa đường tròn. Đường thẳng đi qua M và vuông góc với MC cắt Ax ở P; đường thẳng qua C và vuông góc với CP cắt By tại Q. Gọi D là giao điểm của CP với AM; E là giao điểm của CQ với BM
a) CMR: ACMP nội tiếp
b) CMR: AB song song DE
c) CMR: M;P;Q thằng hàng
d) Biết góc MAO = 60o Tính S quạt chắn cung AM
cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:
A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định
b. MA^2+MB^2+MC^2+MD^2=4R^2
c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau
2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD
a,CM: Sahkb=Sacb+Sadb
b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ
3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat
5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ
7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.
nhờ các bạn ssieeu toán giải hộ mình với! thanks nhiều
cho nửa đường tròn tâm O có đường kính AB. từ một điểm m nằm trên nửa đường tròn bất kì. Vẽ tiếp tuyến xy kẻ AD; BC cùng vuông góc với xy tại D và C
CMR : MC = MD ; Tông AD+BC có giá trị không phụ thuộc vào vị trí điểm m trên nửa đường tròn; đường tròn đường kính AD tiếp sức với AB
Cho nửa đường tròn tâm O đường kính AB và dây cung DC song song AB. lấy E trên CD, đường thẳng qua O vuông góc với EB tại G cắt AE tại I. đường thẳng qua O vuông góc với AE tại H cắt GE tại J. đường thẳng qua O vuông góc với CD tại K cắt IJ tại F. Chứng minh F là trung điểm IJ
Cho nửa đường tròn tâm O đường kính AB C là 1 điểm thuộc nửa đường tròn H là hình chiếu của C trên AB . Qua trung điểm M của CH kẻ đường vuông góc với OC cắt nửa đường tròn tại D và E . CMR AB là tiếp tuyến đường tròn tâm C bán kính CD
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB . Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N. ( E là tiếp điểm)
a)tính góc MON
b) CMR: MN=AM+BN
c)CMR : AM.BN=R^2
d) gọi I là giao điểm của AM và BN, K là giao điểm của EI và AB .CMR: EI vuông góc với AB