a ) .Xét t/g ABM và t/g NBM có:
AB là đường kính của đường trong (O)
nên : góc ABM = góc NMB = 90 độ
M là điểm chính giữa của cung nhỏ AC
nên : góc ABM = góc MBN=>góc BAM = góc BNM
=> t/g BAN cân tại đỉnh B
Tứ giác AMCB nội tiếp
=> góc BAM = góc MCN ( cùng bù với góc MCB )
=> góc MCN = góc MNC ( cùng bằng góc BAM)
=> t/g MCN cân tại đỉnh M
b) .
Xét t/g MCB và t/g MNQ ta có:
MC = MN ( theo cm trên : MCN cân) ; MB =MQ ( theo giả thiết)
góc BMC = góc MNQ ( vì : góc MCB = góc MNC ; góc MBC = góc MQN ).
=> t/g MCB = t/g MNQ ( c.g.c ) => BC = NQ
Xét t/g vuông ABQ ta có:
AC vuông góc BQ => \(AB^2=BC.BQ=BC.\left(BN+NQ\right)\)
=> \(AB^2=BC.\left(AB+AC\right)=BC.\left(BC+2R\right)\)
=> \(4R^2=BC\left(BC+2R\right)\Rightarrow BC=\left(\sqrt{5}-1\right)R\)