Cho đường tròn tâm O bán kính R . Tại điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) . Vẽ đường thẳng MCD không đi qua tâm ( C nằm giữa M và D ) . OM cắt AB và (O) tại H , gọi I là trung điểm OM
a) CM 4 điểm M,A,O,B thuộc 1 đường tròn
b) CM: AB vuông góc với OM
Câu 4: (3,0 điểm). Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H. a/ Tính OH. OM theo R. b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn. c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R)
Cho đường trong tâm O bán kính 3cm và một điểm M sao cho OM=5cm. Từ M kẻ tiếp tuyên MA với đường tròn (O) (A là tiếp điểm)
a) Tính độ dài đoạn thẳng AM và giá trị của gicd AMO
b) Qua A vẽ đường thẳng vuông góc với OM tại H,cắt đường tròn(O) tại H,cắt đường tròn(O) tại B(B khác A). Chứng minh MB là tiếp tuyến của đường tròn (O)
c) Kẻ đường kính AC của đường tròn(O). Đường thẳng MC cắt đường tròn tại điểm thứ hai là D. Chứng minh góc MHD bằng góc OCD.
cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn . Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm ) . Tia Mx nằm giữa MA và MO cắt đường tròn (O;R) tại hai điểm C và D ( C nằm giữa M và D ) . Gọi I là trung điểm của dây CD , kẻ AH vuông góc với MO tại H
a) Tính OH , OM theo R
b) Chứng minh : bốn điểm M ,A ,I ,O cùng thuộc một đường tròn
c) Gọi K là giao điểm của OI với HA . Chứng minh KC là tiếp tuyến đường tròn (O:R)
Từ M nằm ngoài (O;R). Vẽ 2 tiếp tuyến MA,MB với đường tròn(O);(A,B là tiếp điểm).H là giao điểm của AB và OM
a) Chứng minh : OM vuông góc với AB và AM^2 = MO.MH
b) vẽ đường kính AC của đường tròn tâm O , MC cắt đường tròn tâm O tại D. Chứng minh :∆ACD vuông và MH.MO=MD.MC
c) MC cắt AB tại K , OM cắt (O) và AD lần lượt tại F và I . Chứng minh KI vuông góc với AM tại E và KE/AK= HE/HB + FH/MB
Cho đường tron tâm O bấn kính R .Từ điểm M nằm ngoài đường tròn(O)kẻ 2 tiếp tuyến MA,MB cho đường tròn (A,B là tiếp điểm).Gọi H là giao điểmn của AB và OM a ,chứng minh HA=HB và MO⊥AB b,tính chu vi tam giác ABM ,khi OM=5cm và R=3cm
Cho đường tròn tâm O, bán kính R và M là một điểm nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi E là giao điểm của AB và OM.
a) Chứng minh tứ giác MAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và ME biết OM = 5cm và R = 3cm.
c) Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng góc MEC = góc OED
a)Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MC của đường tròn, A và C là các tiếp điểm. Kẻ đường kính BC. Biết 70 độ thì góc AMC bằng:
b)Cho đường tròn (O; 2cm). Từ điểm A sao cho OA = 4cm , vẽ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là tiếp điểm). Chu vi tam giác ABC bằng:
c)Cho nửa đường tròn tâm O, đường kính AB cm =10 . Điểm M thuộc nửa đường tròn. Qua M kẻ tiếp tuyến xy với nửa đường tròn. Gọi D và C lần lượt là hình chiếu của A, B trên xy. Diện tích lớn nhất của tứ giác ABCD là:
Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
d) Đường thẳng MO cắt đường tròn (O) tại C và D (C nằm giữa O và M). Gọi E là điểm đối xứng của C qua K. Chứng minh E là trực tâm của tam giác ABD.