Cho đường tròn (O;R) và điểm M nằm trên đường thẳng d cố định không giao nhau với đường tròn sao cho khoảng
cách từ tâm O đến d nhỏ hơn 2R. Từ M kẻ cát tuyến MAB không đi qua O, A nằm giữa M và B và hai tiếp tuyến MC, MD
đến đường tròn. Gọi H là trung điểm của dây AB.
a) Chứng minh M, C, O, H, D cùng thuộc một đường tròn.
b) Nêu cách dựng điểm M trên d sao cho góc xen giữa hai tiếp tuyến MC, MD là 600
. Khi đó, giả sử R=5cm, AB =
6cm, hãy tính độ dài của CD, MH.
c) Khi điểm M di động trên đường thẳng d, chứng minh đường thẳng CD luôn đi qua một điểm cố định