Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Cảnh Tùng

Cho đường tròn (O;R) và điểm A với OA = 2R. AB, AC tiếp xúc với (O) tại B và C. Đường thẳng d đi qua a cắt (O) tại D, E (AD < AE, tia AE nằm giữa các tia AO và AB). Đường thẳng OD cắt AB, BC tại F và M. Tiếp tuyến của (O) qua F cắt AC tại N. Đoạn ON cắt (O) tại K

a) Tính BC theo R và chứng minh tứ giác MNCO nội tiếp

b) Vẽ dây cung DP vuông góc với AO, H là giao điểm của AO với BC. Chứng minh tứ giác DHOE nội tiếp và P, H, E thẳng hàng.

c) Giả sử N, O, E thẳng hàng. Tính\(\frac{AD}{AE}\) 

Nguyễn Tất Đạt
8 tháng 7 2021 lúc 22:41

O A B D E C H P F N M I

a) Ta có \(\sin\widehat{OAB}=\frac{OB}{OA}=\frac{1}{2}\). Suy ra \(\widehat{BAC}=2\widehat{OAB}=60^0\)

Vì AB = AC nên \(\Delta ABC\) đều. Vậy \(BC=AB=OB\sqrt{3}=R\sqrt{3}\)

Gọi I là tiếp điểm của FN với (O). Ta có:

\(\widehat{MON}=\widehat{IOM}+\widehat{ION}=\frac{1}{2}\left(\widehat{IOB}+\widehat{IOC}\right)=\frac{1}{2}\widehat{BOC}=60^0=\widehat{MCN}\)

Suy ra tứ giác MNCO nội tiếp.

b) Theo hệ thức lượng: \(\overline{AH}.\overline{AO}=AB^2=\overline{AD}.\overline{AE}\). Suy ra tứ giác DHOE nội tiếp

Ta thấy \(OD=OE,HO\perp HB\), do đó HO,BC là phân giác ngoài và phân giác trong \(\widehat{DHE}\)

Dễ thấy D và P đối xứng nhau qua OA vì dây cung \(DP\perp OA\)

Vì \(\widehat{DHE}+\widehat{DHP}=2\left(\widehat{DHB}+\widehat{DHA}\right)=180^0\) nên P,H,E thẳng hàng.

c) Do N,O,E thẳng hàng nên \(\widehat{DOE}=180^0-\widehat{MON}=120^0\). Suy ra \(DE=R\sqrt{3}\)

Theo hệ thức lượng thì:

\(AD.AE=AB^2\Rightarrow AD^2+AD.DE=AB^2\)

\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-\left(\frac{AB}{DE}\right)^2=0\)

\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-1=0\) vì \(AB=DE=R\sqrt{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{AD}{DE}=\frac{-1+\sqrt{5}}{2}\left(c\right)\\\frac{AD}{DE}=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\) vì \(\frac{AD}{DE}>0\)

\(\Rightarrow\frac{AD}{AE}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Huỳnh  Thị Diệu Thương
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Nguyen Phuc Duy
Xem chi tiết
Nguyễn Đức Đại
Xem chi tiết
Nguyễn Đức Đại
Xem chi tiết
Song Eun Yong
Xem chi tiết
Admin'ss Thịnh's
Xem chi tiết
Lê Thanh Vy
Xem chi tiết
Hoàng Thảo Phương
Xem chi tiết