Cho đương tròn (O;R), đường kính AB cố định. Gọi M là trung điểm của đoạn OB. Dây CD vuông góc AB tại M. Điểm E chuyển độn trên cung lớn CD(E khác A). Nối AE cắt CD tại K. Nối BE cắt CD tại H
a, C/M rằng 4 điểm B,M, E, K thuộc 1 dường tròn
b, C/M AE.AK không đổi
c, Tính theo R diện tích hình quạt tròn giới hạn bởi OB, OC và cung nhỏ BC
a) | góc BEA= 90 ( nội tiếp chắn nửa....), KMB=90 độ (gt). Tứ giác MEBK có 2 góc 2 và M bằng nhau, kề nhau cùng nhìn cạnh KB nên có đpcm |
b | tam giác KAM đồng dạng BAE ( g.g) ==> AK.AE= AM.AB= 2R. 3R/2= 3R2 |
c | tam giác OBC đều ( OB=OC=BC ) có BOC =60 độ. S quạt tròn OBC= π. R2. 60/360 |