Cho đường tròn tâm O, bán kính R và một dây cung BC cố định (BC không đi qua O). A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Các đường thẳng BE và CF cắt đường tròn tâm O tại điểm thứ hai lần lượt là Q và P.
a) CMR: bốn điểm B, F, E, C cùng thuộc một đường tròn.
b) CMR: các đường PQ, EF song song với nhau.
c) Gọi I là trung điểm của BC. CMR: góc FDE bằng hai lần góc ABE và góc FDE góc FIE.
d) Xác định vị trí của điểm A trên cung lớn BC để chu vi tam giác DEF có giá trị lớn nhất.
Cho đường tròn tâm O đường kính BC, A di chuyển trên đường tròn .Vẽ đường phân giác góc A của tam giác ABC cắt đường tròn tại K vẽ AH vuông góc BC. Cho AH=x Tính diện tích tam giác AKH theo R và x
cho tam giác ABC cân tại A nội tiếp đường tròn tâm O đường cao AH cắt đường tròn ở D
a)Chứng tỏ AD là đường kính của hình tròn
b)tính số đo góc ACD
c)Tính đường cao AH,bán kính đường tròn biết AC=20cm,BC=24cm
Cho đường tròn tâm O đường kính BC, A di chuyển trên đường tròn .Vẽ đường phân giác góc A của tam giác ABC cắt đường tròn tại K vẽ AH vuông góc BC. Cho AH=x
a) Tính diện tích tam giác AKH theo R và x. Tìm x để tam giác AHK có diện tích lớn nhất
b) C/m A thay đổi trên đường tròn thì AH2 + HK2 không đổi
cho tam giác ABC cân tại A nội tiếp đường tròn tâm O bán kính R biết AB=10 cm BC=12cm tính R và khoảng cách từ O đến các cạnh của tam giác ABC
Cho tam giác ABC cân tại A , nội tiếp đường tròn (O) . Đường cao AH cắt đường tròn tại D.
a. cm : AD là đương kính của đường tròn (O)
b. tính số đo góc ACD
c. Cho BC=24cm, AC=20 cm . Tính AH và bán kính đường tròn (O)
Giúp mình bài này nhé
Cho tam giác ABC có 3 góc nhọn nội tiếp trong (O;R) có đường cao là AD và đường kính là AM; AD cắt (O) tại K
a) chứng minh B, K, M, C là 4 đỉnh của một hình thang cân.
b) Gọi H là điểm đối xứng của K qua BC. Chứng minh H là trực tâm của tam giác ABC
c) BH cắt AC tại E, CH cắt AB tại F. Chứng minh trung điểm I của AH thuộc đường tròn ngoại tiếp tam giác FED. Cho AE=3, CE=4, BH=4. Tính HE.
Mình giải được a và b rồi còn c thì làm mãi không được
cho (o:r),dây BC cố định không qua tâm O. A thay đổi trên cung BC lớn sao cho O luôn nằm trong tam giác ABC. Các đường cao AD, BE, CF cắt nhau tại H. AO cắt (O) tại K
a, CMR: Tứ giác BEFC nội tiếp và BHCK là hình bình hành
b, Gọi M là trung điểm BC , AM cắt OH tại I. CM: I là trọng tâm tam giác ABC
c, xác định vị trí A để chu vi tam giác DEF có giá trị lớn nhất
giúp mình vs mấy bạn
cho tam giác ABC cân tại A. Vẽ nửa đường tròn tâm D đường kính BC cắt AB, AC lần lượt tại E và F. Các dây BF,CE cắt nhau tại H.
a, Cho BC=10cm ; AB=13cm. Tính AD.
b. chứng minh bốn điểm A,E,H,F cùng nằm trên đường tròn. Xác định tâm O của đường tròn đó
c. chứng minh DE là tiếp tuyến của đường tròn tâm O