OA2 + MA2 = OM2
=> MA2 = OM2 - OA2 = 42 - 22 = 12
=> MA = 2 căn 3
Vì MA là tiếp tuyến nên tam giác OAM là tam giác vuông tại A
Áp dụng định lí Pytago ta có: OA2 + AM2 = OM2
=> AM = √OM2 - OA2 = √16 - 4 = 2√3
OA2 + MA2 = OM2
=> MA2 = OM2 - OA2 = 42 - 22 = 12
=> MA = 2 căn 3
Vì MA là tiếp tuyến nên tam giác OAM là tam giác vuông tại A
Áp dụng định lí Pytago ta có: OA2 + AM2 = OM2
=> AM = √OM2 - OA2 = √16 - 4 = 2√3
Cho đường tròn tâm O bén kính 12cm và điểm M nằm ngoài đường tròn sao cho OM=20cm.Vẽ tiếp tuyến MA với đường tròn (O) (A là tiếp điểm).Độ dài của đoạn MA bằng : A.16cm B.20cm C.256cm D.8cm
Cho đường tròn tâm O, điểm M nằm ngoài đường tròn, vẽ các tiếp tuyến MN, MP (N,P là các tiếp điểm). a) Chứng minh rằng OM là đường trung trực của NP. b) Tính độ dài NP biết ON= 2cm, OM= 4cm.
Cho đường tròn (O) và điểm M nằm ngoài đường tròn(O,R) với OM>2R, từ M vẽ hai tiếp tuyến MA, MB của đường tròn (O) ( A và B là hai tiếp điểm), vẽ cát tuyến MEF của đường tròn (O) (E nằm giữa M và F). Gọi H là giao điểm của MO và AB.
a. Chứng minh tứ giác MAOB nội tiếp đường tròn, xác định tâm của đường tròn đó.
b.Chứng minh MA2 = ME.MF và MH.MO = ME.MF
c. lấy điểm P thuộc cung AB nhỏ. Vẽ tiếp tuyến P cắt MA, MB lần lượt tại K và D, vẽ OK, OD lần lượt cắt AB tại Q và N. Chứng minh KN, DQ, OP đồng quy .
Bài 1:
Cho (O;R), và một điểm M nằm ngoài đường tròn (O) sao cho OM = 2R. Từ M vẽ tiếp
tuyến MA của đường tròn (O) (A là tiếp điểm)
a) Tính độ dài AM theo R
b) Từ A kẻ dây cung AB vuông góc với OM tại H. Chứng minh MB là tiếp tuyến của
đường tròn (O)
(vẽ hình)
Cho đường tròn (O;R) điểm M nằm ngoài đường tròn sao cho OM=2R, qua M kẻ 2 tiếp tuyến MA và MA(A,B là tiếp điểm).Tính ^AOB và ^AMB
Cho đường tron tâm O bấn kính R .Từ điểm M nằm ngoài đường tròn(O)kẻ 2 tiếp tuyến MA,MB cho đường tròn (A,B là tiếp điểm).Gọi H là giao điểmn của AB và OM a ,chứng minh HA=HB và MO⊥AB b,tính chu vi tam giác ABM ,khi OM=5cm và R=3cm
Từ điểm M nằm ngoài đường tròn (O;R) kẻ các tiếp tuyến MA,MB của đường
tròn (O) (A và B là các tiếp điểm, OM > 2R). Gọi E là trung điểm của đoạn thẳng MB,
C là giao điểm của đường thẳng AE với đường tròn (O) và tia MC cắt đường tròn (O)
tại điểm thứ hai D.
a) Chứng minh: tử giác MAOB nội tiếp và gócMOB = gócADB;
b) Chứng minh: BF^2 = EC EA và AD ||MB.
c) Kẻ đường kính BI của đường tròn (O). Đường thẳng MI và đường thẳng AD
cắt nhau tại K . Chứng minh: KD = 3KA.
Cho đường tròn (O;R) . Điểm M nằm ngoài đường tròn sao cho OM =2R . MA và MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M. Gọi C là giao điểm AB và OM
Tính AM, OM theo R
Câu 4: (3,0 điểm). Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H. a/ Tính OH. OM theo R. b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn. c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R)
Cho đường tròn tâm O bán kính R . Tại điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) . Vẽ đường thẳng MCD không đi qua tâm ( C nằm giữa M và D ) . OM cắt AB và (O) tại H , gọi I là trung điểm OM
a) CM 4 điểm M,A,O,B thuộc 1 đường tròn
b) CM: AB vuông góc với OM