Dễ thấy: A,B,O,K,CA,B,O,K,C nằm trên đường tròn đường kính OAOA .
Ta có: AE.AD=AB2=AH.AO⇒E,D,H,OAE.AD=AB2=AH.AO⇒E,D,H,O cùng thuộc 1 đường tròn
Mặt khác: A,E,B,HA,E,B,H cùng thuộc đường tròn đường kính ABAB nên ˆEHF=ˆBAD=ˆEBD=ˆEOFEHF^=BAD^=EBD^=EOF^
Suy ra: E,H,O,FE,H,O,F đồng viên. Suy ra: E,H,O,F,DE,H,O,F,D cùng thuộc đường tròn đường kính OFOF.
Gọi JJ là giao điểm của ININ và ADAD.
Xét 2 tam giác: ΔIHJΔIHJ và ΔFHDΔFHD
Ta có: ˆJIH=ˆAIJJIH^=AIJ^ (t/c đối xứng) =ˆABC=ˆDFH=ABC^=DFH^
Mặt khác:ˆIHJ=ˆIAJIHJ^=IAJ^(t/c đối xứng) =ˆEOF=ˆDHF=EOF^=DHF^
Suy ra:ΔIHJΔIHJ và ΔFHDΔFHD đồng dạng nên JHHD=IHFHJHHD=IHFH
Mà IBFNIBFN là hình bình hành nên NF=IB=IHNF=IB=IH hay JHHD=NFFHJHHD=NFFH
Mà ˆJHD=ˆNFHJHD^=NFH^ (dùng cộng góc, góc nội tiếp,...)
nên ΔJHDΔJHD và ΔNFHΔNFH đồng dạng nên JHDNJHDN nội tiếp
Ta suy ra:ˆNHD=ˆNJD=ˆHDFNHD^=NJD^=HDF^ nên suy ra: NH=NDNH=ND
Mà NH=NANH=NA (t/c đối xứng) nên NA=NDNA=ND(đ.p.c.m)