Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vinh xo

Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B và C là hai tiếp điểm. Vẽ đường kính BD của (O); AD cắt (O) tại điểm thứ hai là E. Gọi H là giao điểm của OA và BC.

a) Chứng minh bốn điểm A, B, O, C cùng nằm trên một đường tròn.

b) Chứng minh AE.AD = AC² và AHE = ADO

c) Gọi K là trung điểm của ED. Đường thẳng OK cắt đường thẳng BC tại F. Chứng minh FD là tiếp tuyến của đường tròn (O)

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng nằm trên 1 đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔABD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\)(3)

=>\(AE\cdot AD=AC^2\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\)

Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)

=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

góc EAH chung

Do đó: ΔAEH đồng dạng với ΔAOD

=>\(\widehat{AHE}=\widehat{ADO}\)

c: Ta có: ΔOED cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)ED tại K

Xét ΔBOA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

Xét ΔOKA vuông tại K và ΔOHF vuông tại H có

\(\widehat{KOA}\) chung

Do đó: ΔOKA đồng dạng với ΔOHF

=>\(\dfrac{OK}{OH}=\dfrac{OA}{OF}\)

=>\(OK\cdot OF=OA\cdot OH\)

=>\(OK\cdot OF=R^2=OD^2\)

=>\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

Xét ΔOKD và ΔODF có

\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

góc KOD chung

Do đó: ΔOKD đồng dạng với ΔODF

=>\(\widehat{OKD}=\widehat{ODF}\)

=>\(\widehat{ODF}=90^0\)

=>FD là tiếp tuyến của (O)


Các câu hỏi tương tự
Nyx Artemis
Xem chi tiết
Nhóc vậy
Xem chi tiết
๖ۣۜSۣۜN✯•Y.Šynˣˣ
Xem chi tiết
Tiên Học Lễ
Xem chi tiết
Loan Nguyễn Thị Thanh
Xem chi tiết
Nguyễn Mai Quỳnh
Xem chi tiết
Tịnh hà Lê
Xem chi tiết
Bùi Tiến Lộc
Xem chi tiết
Nguyenphong2012
Xem chi tiết