Trên đường tròn tâm O bán kính R lấy hai điểm A và B sao cho AB = R. Số đo góc
AOB chắn cung nhỏ AB có số đo là :
A.30 0 B. 60 0 C. 90 0 D . 120 0
1.Trong hình 1, biết AC là đường kính, góc BDC bằng 600. Số đo góc ACB bằng
A. 400. | B. 450. | C. 350. | D. 300. |
2.Trong hình 2, góc QMN bằng 600, số đo góc NPQ bằng
A. 200. | B. 250. | C. 300. | D. 400. |
3.Trong hình 3, AB là đường kính của đường tròn, góc ABC bằng 600, khi đó số đo cung BmC bằng
A. 300. | B. 400. | C. 500. | D. 600. |
4.Trong hình 4, biết AC là đường kính của đường tròn, góc ACB bằng 300. Khi đó số đo góc CDB bằng
A. 400. | B. 500. | C. 600. | D. 700. |
5.Trên hình 5, biết số đo cung AmD bằng 800, số đo cung BnC bằng 300. Số đo của góc AED bằng
A. 250. | B. 500. | C. 550. | D. 400. |
6.Trong hình 6, số đo góc BIA bằng 600, số đo cung nhỏ AB bằng 550. Số đo cung nhỏ CD là
A. 750. | B. 650. | C. 600. | D. 550. |
7.Trên hình 7, có MA, MB là các tiếp tuyến tại A và B của (O). Số đo góc AMB bằng 580. Khi đó số đo góc OAB là
A. 280. | B. 290. | C. 300. | D. 310. |
8.Trên hình 8, số đo góc QMN bằng 200, số đo góc PNM bằng 100. Số đo của góc x bằng
A. 150. | B. 200. | C. 250. | D. 300 |
9.Trên hình 9, số đo cung nhỏ AD bằng 800. Số đo góc MDA bằng
A. 400. | B. 500. | C. 600. | D. 700. |
10.Trong hình 10, MA, MB là tiếp tuyến của (O), BC là đường kính, góc BCA bằng 700. Số đo góc AMB bằng
A. 700. | B. 600. | C. 500. | D. 400. |
11.Trong hình 11, có góc BAC bằng 200, góc ACE bằng 100, góc CED bằng 150. Số đo góc BFD bằng
A. 550. | B. 450. | C. 350. | D. 250. |
12.Trong hình 12, có AD//BC, góc BAD bằng 800, góc ABD bằng 600. Số đo góc BDC bằng
A. 400. | B. 600. | C. 450. | D. 650. |
Cho tam giác ABC có B = 70° ; C = 50° nội tiếp trong đường tròn ( O ) .
a ) Tính số đo cung BC .
b ) Gọi AD , BE , CF lần lượt là các đường phân giác của các góc A , B , C . Tính : • Số đo các góc BEC , BED và FDE . • Số đo các cung CBF ; BCE . .
c ) Cho BC = 6 cm . Tính bán kính đường tròn ( O ) .
Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại A của (O) cắt BC tại P
a) Giả sử (BCA) ̂=〖30〗^0. Tính số đo cung nhỏ và cung lớn AB, số đo (PAB) ̂ , số đo (AOB) ̂
b) Chứng minh
c) Tia phân giác trong góc A cắt BC và (O) lần lượt tại D và M. Chứng minh:
MB
1. CHo tam giác ABC có 3 góc nhọn, AB < AC nội tiếp đường tròn (O). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại S
a) Chứng minh SA2 = SB.SC
b) Tia phân giác của BAC cắt dây và cung nhỏ BC tại D và E. Chứng minh: SA = SD
c) Vẽ đường cao AH của tam giác ABC. CHứng tỏ: OE vuông góc BC và AE là tia phân giác của góc HAO
2. CHo hình vẽ bên, biết OM=3cm; MON=1200. tính (làm tròn đến chữ số thập phân thứ hai)
a) độ dài đường tròn (O)
b) diện tích hình quạt OMmN
c) số đo góc MAN
Cho tam giác ABC vuông tại A, kẻ đường cao AH và đường phân giác BE ( H thuộc BC, E thuộc AC), kẻ AD vuông góc với BE( D thuộc BE).
a. Chứng minh tứ giác ADHB nội tiếp được trong một đường tròn, xác định tâm O của đường tròn này.
b. Chứng minh tứ giác ODCB là hình thang.
c. Cho biết góc ABC có số đo bằng 600, AB có độ dài bằng a. Tính theo a diện tích hình phẳng giới hạn bời các đoạn thẳng AC, BC và cung nhỏ AH của (O).
Cho tam giác ABC nhọn, Vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E, CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp đường tròn.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 600, AH = 4cm.
c) Gọi AH cắt BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh rằng hai tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
cho tam giác ABC cân tại A nội tiếp đường tròn (O), tia AO cắt cung nhỏ BC tại D. Biết số đo cung nhỏ BC bằng 100 độ. Số đo góc COD bằng bao nhiêu?
Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại A của (O) cắt BC tại P a) Giả sử (BCA) ̂=〖30〗^0. Tính số đo cung nhỏ và cung lớn AB, số đo (PAB) ̂ , số đo (AOB) ̂ b) Chứng minh c) Tia phân giác trong góc A cắt BC và (O) lần lượt tại D và M. Chứng minh: MB