a: ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC và OH là phân giác của góc BOC
=>HB=HC
b: Xét ΔMBC có
MH vừa là đường cao, vừa là đường trung tuyến
=>ΔMBC cân tại M
Xét ΔOBM và ΔOCM có
OB=OC
góc BOM=góc COM
OM chung
Do đó: ΔOBM=ΔOCM
=>góc OCM=góc OBM=90 độ
=>OC vuông góc CM
c: ΔOMB vuông tại B
=>OB^2+BM^2=OM^2
=>BM=R*căn 3
\(S_{OBM}=\dfrac{1}{2}\cdot OB\cdot BM=\dfrac{1}{2}\cdot R\cdot R\sqrt{3}=\dfrac{R^2\sqrt{3}}{2}\)
\(S_{OCM}=\dfrac{1}{2}\cdot OC\cdot CM=\dfrac{R^2\sqrt{3}}{2}\)
=>\(S_{OBMC}=2\cdot\dfrac{R^2\sqrt{3}}{2}=R^2\sqrt{3}\)