1: góc ACB=1/2*180=90 độ
góc HKB+góc HCB=180 độ
=>CBKH nội tiếp
2: góc MCA=1/2*sđ cung MA
góc ACK=góc MBA=1/2*sđ cung MA
=>góc MCA=góc KCA
=>CA là phân giác của góc MCK
1: góc ACB=1/2*180=90 độ
góc HKB+góc HCB=180 độ
=>CBKH nội tiếp
2: góc MCA=1/2*sđ cung MA
góc ACK=góc MBA=1/2*sđ cung MA
=>góc MCA=góc KCA
=>CA là phân giác của góc MCK
Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M khác A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
1) Chứng minh CBKH là tứ giác nội tiếp.
2) Chứng minh
3) Trên đọan thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C
4) Gọi d là tiếp tuyến của (O) tại điểm A; cho P là điểm nằm trên d sao cho hai điểm P, C nằm trong cùng một nửa mặt phẳng bờ AB và . Chứng minh đường thẳng PB đi qua trung điểm của đoạn thẳng HK
Bài IV (3,5 điểm) Cho đường tròn (O; R) đường kính AB. Bán kính CO vuông góc với AB, M là điểm bất kì trên cung nhỏ AC (M khác A và C), BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
1) Chứng minh tứ giác CBKH là tứ giác nội tiếp.
2) Chứng minh góc ACM = góc ACK
Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB. M là một điẻm bất kỳ trên cung nhỏ AC (M khác A, C), BM cắt AC tại H. Gọi K là hình chiếu của H trên AB
a, Chứng minh CBKH là tứ giác nội tiếp
b, Chứng minh: A C M ^ = A C K ^
c, Trên đoạn thẳng BM lấy điểm E sao cho BE = AM. Chứng minh tam giác ECM là tam giác vuông cân tại C
d, Gọi d là tiếp tuyến của (O) tại điểm A; cho P là điểm nằm trên d ao cho hai điểm P, C nằm trong cùng một nưanr mặt phẳng bờ AB và A P . M B M A = R . Chứng minh đường thẳng PB đi qua trung điểm của đoạn thẳng HK
Cho (O), bán kính R. Bán kính CO vuông góc với AB. M là 1 điểm bất kì trên cung nhỏ AC (M khác A và C). BM giao AC tại H. Gọi K là hình chiếu của H trên AB.
a, Chứng minh tứ giác CBKH nội tiếp.
b, góc ACM = góc ACK.
c, Trên BM lấy E sao cho BE = AM. Chứng minh tam giác ACM cân tại C?
Cho đường tròn (O,R) đường kính AB. Bán kính CO vuông góc với AB, M là điểm bất kì trên cung nhỏ AC ( M khác A và C), BM cắt AC tại H. Gọi K là hình chiếu của H trên AB
1, Chứng minh CBKH là tứ giác nội tiếp và ACM=ACK
2,Trên đoạn thẳng BM lấy điểm E sao cho BE=AM. Chứng minh tam giác ECM vuông cân tại C
3, Gọi d, là tiếp tuyến của (O) tại điểm A. Cho P là 1 điểm nằm trên d sao cho hai điểm P,C nằm trên cùng một mặt phẳng bờ AB và AP.MB/AM=R. Chứng minh đường thẳng PB đi qua trung điểm của HK
Cho đường tròn (O) đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
A) chứng minh BHFE là tứ giác nội tiếp.
B) chứng minh BI.BF = BC.BE
C) tính diện tích tam giác FEC theo R khi H là trung điểm của OA.
D) cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua 1 điểm cố định
Cho đường tròn tâm O, đường kính AB=2R, C là điểm trên (O) sao cho cung CA lớn hơn cung CB. Kẻ dây CD vuông góc với AD tại H, E là 1 điểm bất kì thuộc cung AC, EB cắt CD tại K.
a) Chứng minh tứ giác AHKE là tứ giác nội tiếp
b) Chứng minh tam giác BCK đồng dạng với tam giác BEC. Từ đó suy ra BK.BE = CB bình phương
c) Giả sử Oh = R phần 3. Xác định vị trí của E trên cung AC để đường tròn ngoại tiếp tam giác EHK có bán kính lớn nhất
Cho (O;R) , đường kính AB, CD vuông góc với nhau. M là điểm bất kì trên cung AC nhỏ, BM cắt AC tại H. Gọi K là hình chiếu của H trên AB. Gọi d là tiếp tuyến của (O) tại A. P thuộc d sao cho P, C thuộc nửa mặt phẳng bờ AB và \(\dfrac{AP\cdot MB}{MA}=R\) . CMR : BP đi qua trung điểm của HK.
Cho nửa đường tròn tâm O, đường kính AB. Gọi C là 1 điểm bất kì trên đường kính AB. Gọi C là 1 điểm bất kì trên đường tròn đó và M là điểm chính giữa của cung AC. Dây AC cắt dây BM tại H, dg thẳng AD cắt đg thẳng BC tại E
a)Chứng minh EMHC là tứ giác nội tiếp
b)EH vuông góc AB
c) Tam giác ABE cân