Cho đường tròn tâm O bán kính R, hai điểm c và D thuộc đường tròn, B là điểm chính giữa của cung nhỏ CD. Kẻ đường kính BA; trên tia đối của tia AB lấy điểm S. Nối S với cắt (O) tại M, MD cắt AB tại K, MB cắt AC tại H. Chứng minh:
a, B M D ^ = B A C ^ . Từ đó suy ra tứ giác AMHK nội tiếp
b, HK song song CD
cho đường tròn (O,R) và C,D là hai điểm thuộc đường tròn ( CD không đi qua O) gọi B là điểm chính giữa thuộc cung nhỏ CD và BA là đường kính của (O) . trên tia đối của tia AB lấy điểm S. đường thẳng SC cắt (O) tại M,MD cắt AB tại K,MB cắt AC tại H. Chứng minh rằng :
a. tứ giác AMHK nội tiếp trong đường tròn
b. tứ giác CDKH là hình thang
c. OK.OS=R2
Cho đường tròn (O: R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt đường tròn (O; R) tại F.
1. Chứng minh tứ giác BHFE là tứ giác nội tiếp.
2. Chứng minh: EF EA EC EB . . .
3. Tính theo R diện tích FEC khi H là trung điểm của OA.
4. Cho K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định.
giúp mình ý 3 với ạ
Cho đường tròn (O) đường kính AB=2R. Về bán kính OC vuông góc tại AB lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F a, CMR: BHEF nội tiếp b,CMR: BI.BF=BC.BE c, Tính S của tam giác FEC theo R khi H là trung điểm của OA d, Cho K di chuyển trên cung nhỏ AC. CMR: đương thẳng FH lươn đi qua 1 điểm cố định
Cho tam giác ABC cân tại A có góc BAC = 450, nội tiếp đường tròn (O;R). Tia AO cắt đường tròn (O;R) tại D khác A. Lấy điểm M trên cung nhỏ AB (M khác A, B). Dây MD cắt dây BC tại I. Trên tia đối của tia MC lấy điểm E sao cho ME = MB. Đường tròn tâm D bán kính DC cắt MC tại điểm thứ hai K. CM Tứ giác DCKI là tứ giác nội tiếp.
Cho đường tròn (O) đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
A) chứng minh BHFE là tứ giác nội tiếp.
B) chứng minh BI.BF = BC.BE
C) tính diện tích tam giác FEC theo R khi H là trung điểm của OA.
D) cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua 1 điểm cố định
Cho tam giác ABC cân tại A có góc BAC=45o, nội tiếp đường tròn (O;R). Tia AO cắt đường tròn (O;R) tại D khác A. Lấy điểm M trên cung nhỏ AB (M khác A, B). Dây MD cắt dây BC tại I. Trên tia đối của tia MC lấy điểm E sao cho ME=MB. Đường tròn tâm D bán kính DC cắt MC tại điểm thứ hai là K.
1. Chứng minh rằng:
a, BE song song với DM.
b, Tứ giác DCKI là tứ giác nội tiếp.
Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt HK tại E, nối AE cắt (O) tại F.
1. Chứng minh 4 điểm B, H, F, E cùng thuộc một đường tròn.
2. Tính theo R diện tích tam giác FEC khi H là trung điểm OA.
3. Khi K di chuyển trên cung nhỏ AC. Chứng minh đường thẳng FH luôn đi qua một điểm cố định
Cho đường tròn (O; R), đường kính AB vuông góc với dây cung CD tại H (HB < R). Gọi M là điểm bất kì trên cung nhỏ AC, toa AM cắt đường thăng CD tại N; MB cắt CD tại E
a, Chứng minh các tứ giác AMEH và MNBH nội tiếp
b, Chứng minh NM.NA = NC.ND = NE.NH
c, Nối BN cắt (O) tại K (K ≠ B). Đường thẳng KH cắt (O) tại điểm thứ hai là F. Chứng minh ba điểm A, E, K thẳng hàng và ∆AMF cân.
d, Chứng minh rằng khi M di dộng trên cung nhỏ AC thì I luôn thuộc một đường tròn cố định