cho đg tròn tâm (o) đg kính AB = 2R trên tia đối của tia AB lấy điểm M sao cho AM = R . Kẻ đg thẳng d vông góc vs BM tại M , gọi n là trung điểm của OA , qua N vẽ dây cung CD của đg tròn (o) ,( CD ko là đg kính ) , tia BC cắt D tại E , tia BD cắt D tại F
cho đg tròn tâm (o) đg kính AB = 2R trên tia đối của tia AB lấy điểm M sao cho AM = R . Kẻ đg thẳng d vông góc vs BM tại M , gọi n là trung điểm của OA , qua N vẽ dây cung CD của đg tròn (o) ,( CD ko là đg kính ) , tia BC cắt D tại E , tia BD cắt D tại F
a) chứngminh tg MACE nội tiếp
b) tính tích BE.BC theo R
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA, qua D vẽ dây cung EF bất kì của (O;R). Tia BE cắt d tại M, tia BF cắt d tại N.
a) Chứng minh tứ giác MCAE nội tiếp
b) Chứng minh BE.BM = BF.BN
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA; qua D vẽ dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính). Tia BE cắt d tại M, tia BF cắt d tại N.
1. Chứng minh tứ giác MCAE nội tiếp.
2. Chứng minh BE.BM = BF.BN
3. Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R.
4. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi.
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA, qua D vẽ dây cung EF bất kì của (O;R). Tia BE cắt d tại M, tia BF cắt d tại N.
a) Khi EF=4R/ căn 5. Tính DE,DF theo R
b) Cho A,B,C cố định.CMR tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên 1 đường thẳng cố định khi E chạy trên đường tròn (O)
Làm giúp mình câu c với. Cám ơn các bạn!
Cho (O;R) đường kính AB cố định. Trên tia đối của AB lấy C sao cho AC = R. Kẻ đường thẳng vuông góc với BC tại C. Gọi d là trung điểm OA, qua d vẽ dây cung EF bất kì của (O) (È không là đường kính) . Tia BE cắt d tại M , BF cắt d tại N .
a) C/m : MCAE nội tiếp
b) BE . BM = BF . BN
c) Chứng minh tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA; qua D vẽ dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính). Tia BE cắt d tại M, tia BF cắt d tại N.
1. Chứng minh tứ giác MCAE nội tiếp.
2. Chứng minh BE.BM = BF.BN
3. Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R.
4. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi.
lm hộ minh ý 4 nhá
Bài 3. Cho tam giác ABC vuông ở A, với AC > AB. Trên AC lấy điểm M, vẽ đường tròn tâm O đường kính MC. Tia BM cắt đường tròn (O) tại D. Đường thẳng qua A và D cắt đường tròn (O) tại S. a) Chứng minh ABCD là tứ giác nội tiếp b) Chứng minh AC là tia phân giác của góc SCB c) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh rằng các đường thẳng BA, EM, CD đồng quy. d) Chứng minh DM là tia phân giác của góc ADE e) Chứng minh M là tâm đường tròn nội tiếp tam giác ADE
Cho đường tròn (O) đường kính AB và điểm C thuộc (O) sao cho AC>BC.Qua O kẻ đường thẳng vuông góc với dây cung AC tại H. Tiếp tuyến tại A của đường tròn cắt tia OH tại D. Đoạn DB cắt đường tròn (O) tại E. Trên tia đối tia EA lấy điểm F sao cho E là trung điểm của AF. Từ F vẽ đường thẳng vuông góc với AD tại K. Đoạn KF cắt BC tại M, chứng minh MK=MF