Cho đường tròn (O) đường kính AB cố định. Gọi C là một điểm di
động trên (O) sao cho C khác A, C khác B và C không nằm chính giữa cung AB . Vẽ
đường kính CD của (O). Gọi d là tiếp tuyến của (O) tại A . Hai đường thẳng BC, BD
cắt d tại E, F.
1) Chứng minh tứ giác CDFE nội tiếp được đường tròn
2) Gọi M là trung điểm của EF và I là tâm đường tròn ngoại tiếp tứ giác CDFE .
Chứng minh : AB = 2.IM
3) Gọi H là trực tâm tam giác DEF . Chứng minh khi điểm C di động trên (O) thì điểm H luôn
chạy trên một đường tròn cố định.
Cho đường tròn (O) đường kính AB. Trên đoạn thẳng OB lấy điểm H bất kì (H không trùng O, B). Trên đường thẳng vuông góc với OB tại H, lấy một điểm M ở ngoài đường tròn; MA và MB thứ tự cắt đường tròn (O) tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh MCID và MCHB là tứ giác nội tiếp
Trên nữa đường tròn (O) đường kính AB lấy hai điểm C, D sao cho cung AC < cung AD, (C khác A; D khác B). Các đoạn thẳng AD, BC cắt nhau tại H. vẽ HE vuông góc với OA tại E (E nằm giữa hai điểm O và B). Chứng minh: OCDE là tứ giác nội tiếp
Cho nữa đường tròn (O;R) đường kính AB. Một điểm M cố định thuộc đoạn thẳng OB (M khác B và M khác O). Đường thẳng d vuông góc với AB tại M cắt nữa đường tròn đã cho tại N. Trên cúng NB lấy điểm E bất kì ( E khác B và E khác N). Tia BE cắt đường thẳng d tại C, đường thẳng AC cắt nữa đường tròn tại D. Gọi giao điểm của AE với d là H
Gọi K là tâm đường tròn ngoại tiếp tam giác AHC. Chứng minh rằng khi E di động trên cung NB thì K luôn nằm trên 1 đường thẳng cố định
Cho đường tròn (O) đường kính AB cố định. Gọi C là một điểm di động trên (O) sao cho C khác A, C khác B và C không nằm chính giữa cung AB . Vẽ đường kính CD của (O). Gọi d là tiếp tuyến của (O) tại A . Hai đường thẳng BC, BD cắt d tại E, F. Gọi H là trực tâm . Chứng minh khi điểm C di động trên (O) thì điểm H luôn chạy trên một đường tròn cố định.
Cho đường tròn ( O ) và một điểm A nằm ngoài đường tròn . Kể tiếp tuyến AB với đường tròn O ( B là tiếp điểm ) và đường kính BC . Trên đoạn thẳng CO lấy I ( I khác C , I khác O ) . Đường thẳng AI cắt ( O ) tại hai điểm D và E ( D nằm giữa A và E ) . Gọi H là trung điểm đọn thẳng DE . Chứng minh :
a) chứng minh : 4 điểm A,B,O,H cùng nằm trên một đường thẳng .
b) chứng minh : AB/AE = BD/BE
c) đường thẳng D đi qua E song song với AO , D cắt BC tại điểm K
d) tia CD cắt AO tại P , tia EO cắt BP tại F . Chứng minh tứ giác BECF là hình chữ nhật
Cho đường tròn ( O ) và một điểm A nằm ngoài đường tròn . Kể tiếp tuyến AB với đường tròn O ( B là tiếp điểm ) và đường kính BC . Trên đoạn thẳng CO lấy I ( I khác C , I khác O ) . Đường thẳng AI cắt ( O ) tại hai điểm D và E ( D nằm giữa A và E ) . Gọi H là trung điểm đọn thẳng DE . Chứng minh :
a) chứng minh : 4 điểm A,B,O,H cùng nằm trên một đường thẳng .
b) chứng minh : AB/AE = BD/BE
c) đường thẳng D đi qua E song song với AO , D cắt BC tại điểm K
d) tia CD cắt AO tại P , tia EO cắt BP tại F . Chứng minh tứ giác BECF là hình chữ nhật
Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.
1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.
2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.
3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.
4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.
Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.
1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.
2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.
3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.
4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.
Cho ∆ABC nội tiếp đường tròn tâm O đường kính AB sao cho AC < BC; E là một điểm thuộc đoạn BC (E khác B và C). Tia AE cắt đường tròn (O) tại điểm thứ hai D. Kẻ EH vuông góc với AB tại H.
1) Chứng minh tứ giác ACEH là tứ giác nội tiếp.
2) Tia CH cắt (O) tại điểm thứ hai F. Chứng minh rằng EH // DF.
3) Chứng minh rằng đường tròn ngoại tiếp ∆CHO đi qua điểm D.
4) Gọi I và K lần lượt là hình chiếu vuông góc của điểm F trên các đường thẳng CA và CB. Chứng minh rằng AB, DF, IK cùng đi qua một điểm.