Cho đương tròn(O, R), dây AB cố định không đi qua tâm. C là điểm nằm trên cung nhỏ AB sao cho cung AC không lớn hơn cung BC. Kẻ dây CD vuông góc với AB tại H. Gọi điểm K là hình chiếu vuông góc của C trên đường thẳng DA.
a) Chứng minh: Bốn điểm A, H, C, K cùng thuộc một đường tròn.
b) Chứng minh: CD là tia phân giác của góc BCK
c) KH cắt BD tại E. Chứng minh: CE vuông góc BD
d) Khi điểm C di chuyển trên cung nhỏ AB. Xác định vị trí của điểm C để CK. AB + CE. DB có giá trị lớn nhất?
Cho (O;R) và dây cung AB cố định không đi qua tâm O; 2 điểm C, D di động trên cung lớn AB sao cho AD//BC. Gọi M là giao điểm của AC và BD.
a) Chứng minh \(MO⊥AD\)
b) Chứng minh điểm M luôn nằm trên đường tròn cố định
c) Chứng minh đường thẳng đi qua M và // với AD luôn đi qua một điểm cố định I. Tính IO theo R và AB=R
cho đường tròn tâm O bán kính 5cm. vẽ dây bc không đi qua tâm. trên tia đối của tia bc lấy điểm m đường thẳng đi m cắt đường tròn (O) tại n và p sao cho O nằm trong góc pmc và n nằm giữa m với p .trên cung nhỏ np lấy a là điểm chính giữa của cung np nơi ab và ac lần lượt cắt np ở d và e. Chứng minh: md.me=mn.mp
Cho đường tròn (O), dây AB cố định không đi qua O; Lấy hai điểm C và D thuộc
dây AB sao cho AC = CD = DB. Các bán kính qua C và D cắt cung nhỏ AB tại E và
F.
a) Chứng minh AE < EF
b) Một điểm M di động trên đường tròn (O), điểm P thuộc đoạn thẳng AM, điểm Q
thuộc đoạn thẳng BM sao cho AP = BQ. Chứng minh đường trung trực của PQ luôn
đi qua điểm cố định.
Giả sử AB là một dây cung của đường tròn (O). Trên cung nhỏ AB lấy các điểm C và D sao cho A C ⏜ = B D ⏜ . Chứng minh AB và CD song song
Cho đường tròn tâm O bán kính R và dây AB bất kỳ. Gọi M là điểm chính giữa của cung nhỏ AB. E và F là hai điểm bất kỳ trên dây AB. Gọi C và D tương ứng là giao điểm của ME, MF của đường tròn (O). Chứng minh ∠ EFD + ∠ ECD = 180 °
cho đường tròn tâm o đường kính AB trên cùng 1 nửa đường tròn (O) đường kính AB lấy 2 điểm C và D sao cho cung AC nhỏ ho7n cung AD .Gọi T là giao điểm của CD và AB .Vẽ đường tròn tâm I đường kính TO cắt đường tròn tâm O tại M và N (M nằ giũa cung nhỏ CD ) nối MN cắt AB tại E . cHỨNG MINH TM là tiếp tuyến của đường tròn (O) chứng minh TM^2= TC.TD . 4 điểm o, d,c,e cùng nằm trên đường tròn
Cho đường tròn (O;R) và dây cung AB cố định không đi qua tâm O; C và D là hai điểm di động trên cung lớn AB sao cho AD và BC luôn song song với nhau. Gọi M là giao điểm của AC và BD . Chứng minh rằng:
1) , suy ra AOMB là tứ giác nội tiếp.
2)
3) Đường thẳng d đi qua M và song song với AD luôn đi qua một điểm cố định.
Cho đường tròn tâm (O) và dây AB, lấy 2 điểm M,N nằm trên cung nhỏ AB chia cung này thành 3 cung bang nhau là Cung AM=Cung MN=Cung NB. Các bán kính OM và ON cắt AB tại C và D. Chứng minh rằng:
a. AC=BD
b. AC > CD