Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE=góc CAB
Do đó: ΔADE đồng dạng với ΔACB
=>góc ADE=góc ACB và góc AED=góc ABC
=>góc ADE=góc BAH và góc AED=góc CAH
=>gó MAD=góc MDA và góc MAE=góc MEA
=>MD=ME=MA
=>M là tâm đường tròn ngoại tiếp ΔADE
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE=góc CAB
Do đó: ΔADE đồng dạng với ΔACB
=>góc ADE=góc ACB và góc AED=góc ABC
=>góc ADE=góc BAH và góc AED=góc CAH
=>gó MAD=góc MDA và góc MAE=góc MEA
=>MD=ME=MA
=>M là tâm đường tròn ngoại tiếp ΔADE
Cho tam giác ABC nội tiếp đường tròn(O).Tia phân giác của góc BAC cắt đường tròn(O)tại A và D.Đường tròn tâm D,bán kính DB cắt đường thẳng AB tại B và Q,cắt đường thẳng AC tại C và P. a)CMR:OA vuông góc PQ b)Gọi K là giao điểm của BC và PQ.CMR:KB.KC=KP.KQ=R^2-DK^2(với DB=R:bán kính đường tròn(D))
Cho tam giác ABC vuông tại A (AB >AC )đường tròn tâm O đường kính AB cắt BC tại H. Gọi K là trung điểm của AC a,Chứng minh AH là đường cao của tam giác ABC b, Chứng minh tam giác KOH = tam giác KAO . Suy ra số đo KHI
Cho \(\Delta ABC\) nhọn và nội tiếp đường tròn(O,R).Các đường cao AM,BN của \(\Delta ABC\) cắt nhau tại H(\(M\in BC,N\in AC\)).Tia AM cắt cung nhỏ BC của đường tròn(O,R) tại D.Kẻ đường kính AE của đường tròn(O,R)
a)CMR:BC//DE
b)\(CMR:S_{ABC}=\dfrac{AB.BC.CA}{4R}\)
cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
Cho ∆ABC nhọn nội tiếp (O) có 3 đường cao AD,BE,CF cắt nhau tại H. Đường thẳng AH cắt (O) tại K. Đường kính AI của đường tròn. a, Chứng minh AB.AC=AD.AI c, đường tròn đk AH cắt (O) tại M. P là điểm chính giữa cung nhỏ BC, MP cắt BC tại G. Chứng minh HG là pg góc BHC
Cho tam giác ABC nhọn có AB> AC. Gọi M là tđ của BC; H là trực tâm; AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và ( C2) lần lượt là đường tròn ngoại tiếp tam giác AEF và DKE, với K là giao điểm của EF và BC.CMR: ME là tiếp tuyến chung của (C1) và (C2).
Giúp em với ạ!!
giúp tui câu này đc ko chiều tui thi r cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
cho đường tròn tâm O và dây AB .Gọi M là điểm chính giữa của cung AB và C là điểm bất kì nằm giữa A và B .Tia MC cắt đường tròn tâm O tại D
a)CM MC.MD=MA^2
b)CM tam giác MBC và tam giác MDB đồng dạng
Cho ∆ ABC vuông tại A, có AB = 6cm, AC = 8 cm, đường cao AH, a) Giải tam giác ABC b) Chứng minh ba đỉnh A, H, C cùng thuộc đường tròn và chỉ ra tâm của đường tròn đó.