Cho ∆ABC nhọn nội tiếp (O) có 3 đường cao AD,BE,CF cắt nhau tại H. Đường thẳng AH cắt (O) tại K. Đường kính AI của đường tròn. a, Chứng minh AB.AC=AD.AI c, đường tròn đk AH cắt (O) tại M. P là điểm chính giữa cung nhỏ BC, MP cắt BC tại G. Chứng minh HG là pg góc BHC
giúp tui câu này đc ko chiều tui thi r cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
Cho tam giác ABC nội tiếp đường tròn(O).Tia phân giác của góc BAC cắt đường tròn(O)tại A và D.Đường tròn tâm D,bán kính DB cắt đường thẳng AB tại B và Q,cắt đường thẳng AC tại C và P. a)CMR:OA vuông góc PQ b)Gọi K là giao điểm của BC và PQ.CMR:KB.KC=KP.KQ=R^2-DK^2(với DB=R:bán kính đường tròn(D))
cho tam giác ABC cân tại A nội tiếp đường tròn (O). vẽ trung tuyến AM của tam giác ABC. gọi B' đối xứng với B qua O .Vẽ qua A vuông góc với CB' và cắt BC' tại H chứng minh AH là tiếp tuyến của đường tròn (O)
cho (O;R),dây BC khác dường kính .Qua O kẻ đường vuông góc với BC tai I,cắt tiếp tuyến tại B của đường tròn ở điểm A ,vẽ đường kính BD
a)CM CD//OA
b)CM AC là tiếp tuyến của đường tròn (O)
c) Đường thẳng vuông góc BD tại O cắt BC tại K.CM IK.IC
Cho tam giác ABC vuông tại A (AB >AC )đường tròn tâm O đường kính AB cắt BC tại H. Gọi K là trung điểm của AC a,Chứng minh AH là đường cao của tam giác ABC b, Chứng minh tam giác KOH = tam giác KAO . Suy ra số đo KHI
cho tam giác ABC nhọn nội tiếp đường tròn tâm (O;R) có cạnh BC cố định còn điểm A thay đổi trên đường tròn (O) các đường cao BD, CE của tam giác ABC cắt nhau tại H tia ED cắt (O) tại M. C/m
a/ tam giác ADE đồng dạng ABC
b/ AO vuông góc với DE
c/ \(AM^2=AD.AC\)
d/ AH không đổi khi A thay đổi trên (O)
e/ CHo a,b,c,d là các số thực dương có tổng bằng 1
Cho đường trong tâm O bán kính 3cm và một điểm M sao cho OM=5cm. Từ M kẻ tiếp tuyên MA với đường tròn (O) (A là tiếp điểm)
a) Tính độ dài đoạn thẳng AM và giá trị của gicd AMO
b) Qua A vẽ đường thẳng vuông góc với OM tại H,cắt đường tròn(O) tại H,cắt đường tròn(O) tại B(B khác A). Chứng minh MB là tiếp tuyến của đường tròn (O)
c) Kẻ đường kính AC của đường tròn(O). Đường thẳng MC cắt đường tròn tại điểm thứ hai là D. Chứng minh góc MHD bằng góc OCD.
Cho tam giác ABC nhọn (AB>AC), nội tiếp đường tròn (O, R). Đường phân giác của góc BAC cắt đường tròn ở D, Elà điểm đối xứng của D qua O, DE cắt BC tại M. Đường thẳng qua M và trung điểm N của AC cắt đường thẳng AE ở K. Gọi F là hình chiếu của E trên AB
1. Chứng minh bốn điểm B, E, F, M cùng nằm trên 1 đường tròn
2. Chứng minh MF// AD
3. Giả sử góc BAC = 60 độ. Tính KF theo R