Cho đường tròn (O;8cm) đường kính MN. Lấy điểm H thuộc đoạn MO sao cho OH=2cm. Kẻ dây cung CD\(\perp\)MN tại H
a) Chứng minh ΔMNC vuông và tính độ dài MC
b) Tiếp tuyến tại M của (O) cắt NC tại E
Chứng minh ΔCND cân và \(\dfrac{EC}{DH}=\dfrac{EM}{DN}\)
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp trong đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng: HA là tiếp tuyến của đường tròn (O)
Cho (O; R) và một điểm A nằm ngoài (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của (O) (B là tiếp điểm)
a) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R.
b) Từ B kẻ dây cung BC của (O) vuông góc với cạnh OA tại H. chứng minh AC là tiếp tuyến của (O)
c) Chứng minh tam giác ABC đều
d) Từ H kẻ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của OB. Chứng minh ba điểm A, E, F thẳng hàng.
cho tam giác abc vuông tại a(ab<ac) nội tiếp (o;r) đường kính bc. Kẻ dây ad vuông góc với bc. gọi e là giao điểm của db và ca. qua e kẻ đường thẳng vuống góc với bc cắt bc tại h, cắt ab tại f. chứng minh rằng:
a) tam giác ebf cân
b) tam giác haf cân
c) ha là tiếp tuyến của (o)
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp trong đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng: Tam giác HAF cân
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp trong đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng: Tam giác EBF cân
Cho đường tròn (O) đường kính AB và điểm C thuộc (O) sao cho AC>BC.Qua O kẻ đường thẳng vuông góc với dây cung AC tại H. Tiếp tuyến tại A của đường tròn cắt tia OH tại D. Đoạn DB cắt đường tròn (O) tại E. Trên tia đối tia EA lấy điểm F sao cho E là trung điểm của AF. Từ F vẽ đường thẳng vuông góc với AD tại K. Đoạn KF cắt BC tại M, chứng minh MK=MF
Cho đường tròn (O) đường kính AB và điểm C thuộc (O) sao cho AC>BC.Qua O kẻ đường thẳng vuông góc với dây cung AC tại H. Tiếp tuyến tại A của đường tròn cắt tia OH tại D. Đoạn DB cắt đường tròn (O) tại E. Trên tia đối tia EA lấy điểm F sao cho E là trung điểm của AF. Từ F vẽ đường thẳng vuông góc với AD tại K. Đoạn KF cắt BC tại M, chứng minh MK=MF