Điểm M(2; 3) ∈ d
Vectơ chỉ phương của d: vecto u = (1; -2)
⇒ Vectơ pháp tuyến của d: vecto n = (2; 1)
Phương trình tổng quát của d:
d: 2(x - 2) + (y - 3) = 0
⇔ 2x - 4 + y - 3 = 0
⇔ 2x + y - 7 = 0
\(d\) có \(VTCP\overrightarrow{u}=\left(1;-2\right)\Rightarrow VTPT\overrightarrow{n}=\left(2;1\right)\)
qua \(A\left(2;3\right)\)
\(PTTQ\) của d dạng \(a\left(x-x_o\right)+b\left(y-y_o\right)=0\)
\(\Leftrightarrow2\left(x-2\right)+1\left(y-3\right)=0\)
\(\Leftrightarrow2x-4+y-3=0\)
\(\Leftrightarrow2x+y-7=0\)