Trung trực AB cắt đường thẳng vuông góc với d ở A tại O. Đường tròn (O;OA) là đường tròn cần dựng
Trung trực AB cắt đường thẳng vuông góc với d ở A tại O. Đường tròn (O;OA) là đường tròn cần dựng
Cho đường thẳng d, điểm A nằm trên đường thẳng d, điểm B nằm ngoài đường thẳng d. Hãy dựng đường tròn (O) đi qua điểm B và tiếp xúc với đường thẳng d tại A.
Cho đường thẳng d, điểm A nằm trên đường thẳng d, điểm B nằm ngoài đường thẳng d. Hãy dựng đường tròn (O) đi qua điểm B và tiếp xúc với đường thẳng d tại A.
Cho điểm A nằm trên đường thẳng d, điểm B nằm ngoài đường thẳng d. Dựng đường tròn (O) đi qua A và B nhận đường thẳng d làm tiếp tuyến.
Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn (O). Qua điểm A dựng hai tiếp tuyến AM,AN đến đường tròn (O) với M,N là các tiếp điểm. Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB<AC, đường thẳng d không đi qua tâm O)
a) Chứng minh tứ giác AMON là tứ giác nội tiếp
b) Chứng minh AN\(^2\)=AB.AC
c) Hai tiếp tuyến của đường trong (O) tại B và C cắt nhau tại K. Chứng minh rằng điểm K luôn thuộc một đường thẳng cố định khi đường thẳng d thay đổi và đường thẳng d thỏa mãn điều kiện đề bài
Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn (O). Qua điểm A dựng hai tiếp tuyến AM,AN đến đường tròn (O) với M,N là các tiếp điểm. Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB<AC, đường thẳng d không đi qua tâm O)
a) Chứng minh tứ giác AMON là tứ giác nội tiếp
b) Chứng minh AN=AB.AC
c) Hai tiếp tuyến của đường trong (O) tại B và C cắt nhau tại K. Chứng minh rằng điểm K luôn thuộc một đường thẳng cố định khi đường thẳng d thay đổi và đường thẳng d thỏa mãn điều kiện đề bài
Giúp mình với đang cần gấp lắm!!
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh AMBO là tứ giác nội tiếp.
b) Chứng minh MC.MD=MA2
c) Chứng minh đường tròn ngọai tiếp tam giác OPQ luôn đi qua điểm cố định khác O
Từ một điểm A nằm bên ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là tiếp điểm). Một đường thẳng (d) đi qua A cắt đường tròn (O) tại hai điểm D và E (d không đi qua tâm O, D nằm giữa A và E), gọi I là trung điểm của DE. BC cắt AE tại S. Qua C kẻ đường thẳng song song với AB, đường thẳng này cắt các đường thẳng BE, BD lần lượt tại M và N. CM: C là trung điểm MN.
cho (O) , A nằm ngoài (O) . đường thẳng d đi qua A cắt (O) tại B,C sao cho B nằm giữa , d không đi qua O . kẻ đường thẳng đi qua A , tiếp xúc với (O) tại D sao cho O,D nằm trên cùng một nửa mặt phẳng bờ BC . gọi I là trung điểm BC
a, chứng minh : tứ giác ADOI cùng nằm trên một đường tròn
b, chứng minh : AB.AC =AD^2
mọi người giúp e bài này với câu a đặt tâm ở đâu để vẽ được đường tròn có bốn điểm A ,D ,O ,I nằm trên ạ!
Cho 3 điểm A, B, C cố định nằm trên đường thẳng d (B nằm giữa A và C). Gọi (O) là đường tròn thay đổi luôn đi qua 2 điểm B, C và có tâm O (O không nằm trên đường thẳng d). Kẻ 2 tiếp tuyến AM, AN của đường tròn (O), với M, N là 2 tiếp điểm. AO cắt MN tại H; đường thẳng AO cắt đường tròn (O) tại P và Q (P nằm giữa A và O). Gọi D là trung điểm HQ. Qua H kẻ đường thẳng vuông góc với MD cắt đường thẳng MP tại E. Chứng minh:
a) P là trung điểm ME.
b) Đường thẳng MN luôn đi qua một điểm cố định khi đường tròn (O) thay đổi.