Cho đường cong (C) có phương trình y = x − 1 x + 1 . Gọi M là giao điểm của (C) với trục tung. Tiếp tuyến của (C) tại M có phương trình là
A. y = − 2 x − 1
B. y = 2 x + 1
C. y = 2 x − 1
D. y = x − 2
Cho hàm số y = − x 3 + 3 x 2 + x − 2 có đồ thị là (C). Tiếp tuyến của (C) tại giao điểm của (C) với trục tung có phương trình là
A. y = x − 2
B. y = x
C. y = − x + 2
D. y = x + 2
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0
Cho đường cong y = x 3 + 3 x 2 + 3 x + 1 có đồ thị (C) Phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung là
A. y = 8 x + 1
B. y = 3 x − 1
C. y = 3 x + 1
D. y = − 8 x + 1
Cho hàm số y = x + 2 x + 1 có đồ thị (C). Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị (C) với trục tung là
A. y = x – 2
B. y = –x + 2
C. y = –x + 1
D. y = –x –2
Cho hàm số y = x + 2 x + 1 C . Phương trình tiếp tuyến với đồ thị hàm số tại giao điểm của đồ thị (C) với trục tung là
A. y = − x + 2
B. y = − x + 1
C. y = x − 2
D. y = − x − 2
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
Cho hàm số y = x 3 − 3 x + 1 có đồ thị (C) Tiếp tuyến với (C) tại giao điểm của (C) với trục tung có phương trình là
A. y = -3x - 1
B. y = 3x - 1
C. y = 3x + 1
D. y = -3x + 1
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Đường thẳng (d) có phương trình y = a x + b là tiếp tuyến của (C), biết (d) cắt trục hoành tại A và cắt trục tung tại B sao cho tam giác OAB cân tại O, với O là gốc tọa độ. Tính a+ b
A. 0
B. -2
C. -1
D. -3