Cho đ.tròn (O). Từ 1 điểm M ngoài đ,tròn vẽ tiếp tuyến MA (A là tiếp điểm). Tia MO cắt (O) tại B và C ( B nằm giữa M và O), hạ AH vuông góc với BC ( H thuộc BC), tia AH cắt BC tại D (D khác A)
a. C/m: AMDO là tứ giác nội tiếp
b. C/m: BM.CH= BH.CM
câu 1 :
Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tròn tại M, cắt CD tại E và cắt tia phân giác của góc BAC tại H. CMR:
a, AH ⊥ BE
câu 2 :
Cho (O; R) đường kính AB và điểm C thuộc đường tròn. Gọi M và N là điểm chính giữa các cung nhỏ AC và BC Nối MN cắt AC tại I. Hạ ND vuông góc AC. Gọi E là trung điểm của BC. Dựng hình bình hành ADEF.
a) tính góc MIC
b)DN là tiếp tuyến của (O;R)
c)F thuộc (O)
Từ điểm M nằm ngoài đường tròn O . Vẽ tiếp tuyến MA,MB với đường tròn ( A,B là các tiếp điểm ) và cát tuyến MCD không đi qua O ( C nằm giẵ M và D ) với đường tròn O
a) C/m tứ giác MAOB nội tiếp
b)C/m MA2 =MC.MD
c) Đường thẳng MO cắt AB tại H và cắt O tại I và K ( I nằm giữa M và K ) . C/m CK là phân giác của DCH
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Bài 1:Từ điểm M nằm ngoài đường tròn (O). Vẽ các tiếp tuyến AM,BM với đường tròn (A,B là các tiếp điểm) và cát tuyến MCD không đi qua tâm O (C nằm giữa M và D) với đường tròn(O).
a)C/m: Tứ giác MAOB nội tiếp
b)C/m: MA2=MC.MD
c)Đường thẳng MO cắt AB tại H và cắt (O) tại I và K( I nằm giữa M và K).C/m: CK là tia phân giác của góc DCH
Cho điểm M nằm ngoài đường tròn (O;R). Qua M vẽ hai tiếp tuyến MA, MB và cát tuyến MCD (A,B,C,D thuộc đường tròn tâm O), tia MC nằm giữa hai tia MO và MA. Gọi H là giao điểm của AB và MO.
a/ CM tứ giác MAOB nội tiếp.
b/ Gọi K là trung điểm CD. Chứng minh 5 điểm M, A, K, O, B cùng thuộc một đường tròn. Từ đó suy ra KM là phân giác của góc AKB.
c/ Đường thẳng OK cắt đường thẳng AB tại N. Chứng minh ND là tiếp tuyến đường tròn (O)
Từ điểm A nằm ngoài (O), vẽ tiếp tuyến AB, AC với (O) (B,C là tiếp điểm), vẽ đường kính CD của (O), AD cắt (O) tại M
a) cm OA vuông góc BC tại H, và tứ giác AMHC nội tiếp
b) AD cắt BC tại E, chứng minh EM.AD = DE.AM
c) BM cắt AO tại N, chứng minh N là trung điểm AH
d) gọi I, K là giao điểm cả AO và (O) (I nằm giữa A và O). chứng minh 1/AN = 1/AI + 1/AK
Câu 4: (3,0 điểm). Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H. a/ Tính OH. OM theo R. b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn. c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R)